Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
O
ogs
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dmitri Naumov
ogs
Commits
c8648272
Commit
c8648272
authored
6 years ago
by
renchao.lu
Browse files
Options
Downloads
Patches
Plain Diff
[PL] Assembling partitioned local matrices
parent
50aac31f
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
ProcessLib/ComponentTransport/ComponentTransportFEM.h
+118
-26
118 additions, 26 deletions
ProcessLib/ComponentTransport/ComponentTransportFEM.h
with
118 additions
and
26 deletions
ProcessLib/ComponentTransport/ComponentTransportFEM.h
+
118
−
26
View file @
c8648272
...
...
@@ -62,9 +62,21 @@ template <typename ShapeFunction, typename IntegrationMethod,
unsigned
GlobalDim
>
class
LocalAssemblerData
:
public
ComponentTransportLocalAssemblerInterface
{
// Pressure always first
static
const
int
pressure_index
=
0
;
static
const
int
pressure_size
=
ShapeFunction
::
NPOINTS
;
// per component
static
const
int
concentration_size
=
ShapeFunction
::
NPOINTS
;
using
ShapeMatricesType
=
ShapeMatrixPolicyType
<
ShapeFunction
,
GlobalDim
>
;
using
ShapeMatrices
=
typename
ShapeMatricesType
::
ShapeMatrices
;
using
LocalBlockMatrixType
=
typename
ShapeMatricesType
::
template
MatrixType
<
pressure_size
,
pressure_size
>;
using
LocalSegmentVectorType
=
typename
ShapeMatricesType
::
template
VectorType
<
pressure_size
>;
using
LocalMatrixType
=
Eigen
::
Matrix
<
double
,
Eigen
::
Dynamic
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>
;
using
LocalVectorType
=
Eigen
::
Matrix
<
double
,
Eigen
::
Dynamic
,
1
>
;
...
...
@@ -137,17 +149,86 @@ public:
auto
local_b
=
MathLib
::
createZeroedVector
<
LocalVectorType
>
(
local_b_data
,
local_matrix_size
);
// Nodal DOFs include pressure
auto
const
num_comp
=
num_nodal_dof
-
1
;
// Get block matrices
auto
Kpp
=
local_K
.
template
block
<
pressure_size
,
pressure_size
>(
pressure_index
,
pressure_index
);
auto
Mpp
=
local_M
.
template
block
<
pressure_size
,
pressure_size
>(
pressure_index
,
pressure_index
);
auto
Bp
=
local_b
.
template
segment
<
pressure_size
>(
pressure_index
);
auto
local_p
=
Eigen
::
Map
<
const
NodalVectorType
>
(
&
local_x
[
pressure_index
],
pressure_size
);
for
(
int
comp_id
=
0
;
comp_id
<
num_comp
;
++
comp_id
)
{
/* Partitioned assembler matrix
* | pp | pc1 | pc2 | pc3 |
* |-----|-----|-----|-----|
* | c1p | c1c1| 0 | 0 |
* |-----|-----|-----|-----|
* | c2p | 0 | c2c2| 0 |
* |-----|-----|-----|-----|
* | c3p | 0 | 0 | c3c3|
*/
auto
concentration_index
=
pressure_size
+
comp_id
*
concentration_size
;
auto
KCC
=
local_K
.
template
block
<
concentration_size
,
concentration_size
>(
concentration_index
,
concentration_index
);
auto
MCC
=
local_M
.
template
block
<
concentration_size
,
concentration_size
>(
concentration_index
,
concentration_index
);
auto
MCp
=
local_M
.
template
block
<
concentration_size
,
pressure_size
>(
concentration_index
,
pressure_index
);
auto
MpC
=
local_M
.
template
block
<
pressure_size
,
concentration_size
>(
pressure_index
,
concentration_index
);
auto
local_C
=
Eigen
::
Map
<
const
NodalVectorType
>
(
&
local_x
[
concentration_index
],
concentration_size
);
// Prevent duplicate computation in loops
Kpp
.
setZero
();
Mpp
.
setZero
();
assembleBlockMatrices
(
comp_id
,
t
,
local_C
,
local_p
,
KCC
,
MCC
,
MCp
,
MpC
,
Kpp
,
Mpp
,
Bp
);
}
}
void
assembleBlockMatrices
(
int
const
comp_id
,
double
const
t
,
Eigen
::
Ref
<
const
NodalVectorType
>
const
&
C_nodal_values
,
Eigen
::
Ref
<
const
NodalVectorType
>
const
&
p_nodal_values
,
Eigen
::
Ref
<
LocalBlockMatrixType
>
KCC
,
Eigen
::
Ref
<
LocalBlockMatrixType
>
MCC
,
Eigen
::
Ref
<
LocalBlockMatrixType
>
MCp
,
Eigen
::
Ref
<
LocalBlockMatrixType
>
MpC
,
Eigen
::
Ref
<
LocalBlockMatrixType
>
Kpp
,
Eigen
::
Ref
<
LocalBlockMatrixType
>
Mpp
,
Eigen
::
Ref
<
LocalSegmentVectorType
>
Bp
)
{
assert
(
comp_id
<=
static_cast
<
int
>
(
_process_variables
[
0
].
size
()
-
1
));
unsigned
const
n_integration_points
=
_integration_method
.
getNumberOfPoints
();
SpatialPosition
pos
;
pos
.
setElementID
(
_element
.
getID
());
auto
const
num_nodes
=
ShapeFunction
::
NPOINTS
;
auto
p_nodal_values
=
Eigen
::
Map
<
const
NodalVectorType
>
(
&
local_x
[
num_nodes
],
num_nodes
);
auto
C_nodal_values
=
Eigen
::
Map
<
const
NodalVectorType
>
(
&
local_x
[
0
],
num_nodes
);
auto
const
&
b
=
_process_data
.
specific_body_force
;
MaterialLib
::
Fluid
::
FluidProperty
::
ArrayType
vars
;
...
...
@@ -155,16 +236,6 @@ public:
GlobalDimMatrixType
const
&
I
(
GlobalDimMatrixType
::
Identity
(
GlobalDim
,
GlobalDim
));
auto
KCC
=
local_K
.
template
block
<
num_nodes
,
num_nodes
>(
0
,
0
);
auto
MCC
=
local_M
.
template
block
<
num_nodes
,
num_nodes
>(
0
,
0
);
auto
MCp
=
local_M
.
template
block
<
num_nodes
,
num_nodes
>(
0
,
num_nodes
);
auto
Kpp
=
local_K
.
template
block
<
num_nodes
,
num_nodes
>(
num_nodes
,
num_nodes
);
auto
Mpp
=
local_M
.
template
block
<
num_nodes
,
num_nodes
>(
num_nodes
,
num_nodes
);
auto
MpC
=
local_M
.
template
block
<
num_nodes
,
num_nodes
>(
num_nodes
,
0
);
auto
Bp
=
local_b
.
template
block
<
num_nodes
,
1
>(
num_nodes
,
0
);
for
(
std
::
size_t
ip
(
0
);
ip
<
n_integration_points
;
++
ip
)
{
pos
.
setIntegrationPoint
(
ip
);
...
...
@@ -177,8 +248,9 @@ public:
double
C_int_pt
=
0.0
;
double
p_int_pt
=
0.0
;
// Order matters: First C, then p!
NumLib
::
shapeFunctionInterpolate
(
local_x
,
N
,
C_int_pt
,
p_int_pt
);
NumLib
::
shapeFunctionInterpolate
(
C_nodal_values
,
N
,
C_int_pt
);
NumLib
::
shapeFunctionInterpolate
(
p_nodal_values
,
N
,
p_int_pt
);
// porosity model
auto
const
porosity
=
...
...
@@ -281,6 +353,16 @@ public:
assert
(
!
indices
.
empty
());
auto
const
local_x
=
current_solution
.
get
(
indices
);
// concentration index of the component ranking first
auto
const
concentration_index
=
1
*
ShapeFunction
::
NPOINTS
;
// assuming that fluid density always depends on concentration of the
// first component.
// get local_C and local_p
auto
const
C_nodal_values
=
Eigen
::
Map
<
const
NodalVectorType
>
(
&
local_x
[
concentration_index
],
concentration_size
);
auto
const
p_nodal_values
=
Eigen
::
Map
<
const
NodalVectorType
>
(
&
local_x
[
pressure_index
],
pressure_size
);
cache
.
clear
();
auto
cache_mat
=
MathLib
::
createZeroedMatrix
<
Eigen
::
Matrix
<
double
,
GlobalDim
,
Eigen
::
Dynamic
,
Eigen
::
RowMajor
>>
(
...
...
@@ -290,9 +372,6 @@ public:
pos
.
setElementID
(
_element
.
getID
());
MaterialLib
::
Fluid
::
FluidProperty
::
ArrayType
vars
;
auto
const
num_nodes
=
ShapeFunction
::
NPOINTS
;
auto
const
p_nodal_values
=
Eigen
::
Map
<
const
NodalVectorType
>
(
&
local_x
[
num_nodes
],
num_nodes
);
for
(
unsigned
ip
=
0
;
ip
<
n_integration_points
;
++
ip
)
{
...
...
@@ -314,8 +393,10 @@ public:
{
double
C_int_pt
=
0.0
;
double
p_int_pt
=
0.0
;
NumLib
::
shapeFunctionInterpolate
(
local_x
,
N
,
C_int_pt
,
p_int_pt
);
NumLib
::
shapeFunctionInterpolate
(
C_nodal_values
,
N
,
C_int_pt
);
NumLib
::
shapeFunctionInterpolate
(
p_nodal_values
,
N
,
p_int_pt
);
vars
[
static_cast
<
int
>
(
MaterialLib
::
Fluid
::
PropertyVariableType
::
C
)]
=
C_int_pt
;
vars
[
static_cast
<
int
>
(
...
...
@@ -365,6 +446,16 @@ public:
return
shape_matrices
;
}();
// concentration index of the component ranking first
auto
const
concentration_index
=
1
*
ShapeFunction
::
NPOINTS
;
// assuming that fluid density always depends on concentration of the
// first component.
// get local_C and local_p
auto
const
C_nodal_values
=
Eigen
::
Map
<
const
NodalVectorType
>
(
&
local_x
[
concentration_index
],
concentration_size
);
auto
const
p_nodal_values
=
Eigen
::
Map
<
const
NodalVectorType
>
(
&
local_x
[
pressure_index
],
pressure_size
);
SpatialPosition
pos
;
pos
.
setElementID
(
_element
.
getID
());
...
...
@@ -372,8 +463,11 @@ public:
// local_x contains the local concentration and pressure values
NumLib
::
shapeFunctionInterpolate
(
local_x
,
shape_matrices
.
N
,
vars
[
static_cast
<
int
>
(
MaterialLib
::
Fluid
::
PropertyVariableType
::
C
)],
C_nodal_values
,
shape_matrices
.
N
,
vars
[
static_cast
<
int
>
(
MaterialLib
::
Fluid
::
PropertyVariableType
::
C
)]);
NumLib
::
shapeFunctionInterpolate
(
p_nodal_values
,
shape_matrices
.
N
,
vars
[
static_cast
<
int
>
(
MaterialLib
::
Fluid
::
PropertyVariableType
::
p
)]);
...
...
@@ -388,8 +482,6 @@ public:
MaterialLib
::
Fluid
::
FluidPropertyType
::
Viscosity
,
vars
);
GlobalDimMatrixType
const
K_over_mu
=
K
/
mu
;
auto
const
p_nodal_values
=
Eigen
::
Map
<
const
NodalVectorType
>
(
&
local_x
[
local_x
.
size
()
/
2
],
ShapeFunction
::
NPOINTS
);
GlobalDimVectorType
q
=
-
K_over_mu
*
shape_matrices
.
dNdx
*
p_nodal_values
;
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment