Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
O
ogs
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Dmitri Naumov
ogs
Commits
e262e08f
Commit
e262e08f
authored
12 years ago
by
Tom Fischer
Browse files
Options
Downloads
Patches
Plain Diff
removed complicate template syntax; changed constructor signature a little bit
parent
4c76939b
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
GeoLib/Grid.h
+25
-139
25 additions, 139 deletions
GeoLib/Grid.h
with
25 additions
and
139 deletions
GeoLib/Grid.h
+
25
−
139
View file @
e262e08f
...
...
@@ -45,17 +45,17 @@ public:
* @param pnts (input) the points that are managed with the Grid
* @param max_num_per_grid_cell (input) max number per grid cell in the average (default 512)
*
* @note the somewhat wired template syntax chooses this constructor for non-pointer types
* at compile time
*/
template
<
typename
T
,
typename
=
typename
std
::
enable_if
<
std
::
is_same
<
T
,
POINT
>
::
value
&&
!
std
::
is_pointer
<
T
>::
value
>::
type
>
Grid
(
std
::
vector
<
T
>
const
&
pnts
,
size_t
max_num_per_grid_cell
=
512
)
:
template
<
typename
InputIterator
>
Grid
(
InputIterator
first
,
InputIterator
last
,
size_t
max_num_per_grid_cell
=
512
)
:
GeoLib
::
AABB
(),
_grid_cell_nodes_map
(
NULL
)
{
// compute axis aligned bounding box
const
size_t
n_pnts
(
pnts
.
size
());
for
(
size_t
k
(
0
);
k
<
n_pnts
;
k
++
)
{
this
->
update
(
pnts
[
k
].
getCoords
());
InputIterator
it
(
first
);
size_t
n_pnts
(
0
);
while
(
it
!=
last
)
{
n_pnts
++
;
this
->
update
(
copyOrAddress
(
*
it
)
->
getCoords
());
}
double
delta
[
3
]
=
{
0.0
,
0.0
,
0.0
};
...
...
@@ -125,8 +125,9 @@ public:
}
// fill the grid vectors
for
(
size_t
l
(
0
);
l
<
n_pnts
;
l
++
)
{
double
const
*
const
pnt
(
pnts
[
l
].
getCoords
());
it
=
first
;
while
(
it
!=
last
)
{
double
const
*
const
pnt
(
copyOrAddress
(
*
it
)
->
getCoords
());
const
size_t
i
(
static_cast
<
size_t
>
((
pnt
[
0
]
-
_min_pnt
[
0
])
*
_inverse_step_sizes
[
0
]));
const
size_t
j
(
static_cast
<
size_t
>
((
pnt
[
1
]
-
_min_pnt
[
1
])
*
_inverse_step_sizes
[
1
]));
const
size_t
k
(
static_cast
<
size_t
>
((
pnt
[
2
]
-
_min_pnt
[
2
])
*
_inverse_step_sizes
[
2
]));
...
...
@@ -135,123 +136,7 @@ public:
std
::
cout
<<
"error computing indices "
<<
std
::
endl
;
}
_grid_cell_nodes_map
[
i
+
j
*
_n_steps
[
0
]
+
k
*
n_plane
].
push_back
(
&
pnts
[
l
]);
}
#ifndef NDEBUG
size_t
pnts_cnt
(
0
);
for
(
size_t
k
(
0
);
k
<
n_plane
*
_n_steps
[
2
];
k
++
)
pnts_cnt
+=
_grid_cell_nodes_map
[
k
].
size
();
assert
(
n_pnts
==
pnts_cnt
);
#endif
}
/**
* @brief The constructor of the grid object takes a vector of pointers to points or nodes. This is
* the main difference to the previous constructor. Furthermore the
* user can specify the *average* maximum number of points per grid cell.
*
* The number of grid cells are computed with the following formula
* \f$\frac{n_{points}}{n_{cells}} \le n_{max\_per\_cell}\f$
*
* In order to limit the memory wasting the maximum number of points per grid cell
* (in the average) should be a power of two (since std::vector objects resize itself
* with this step size).
*
* @param pnts (input) a vector holding pointers to the points that are managed with the Grid
* @param max_num_per_grid_cell (input) max number per grid cell in the average (default 512)
*
* @note the somewhat wired template syntax chooses this constructor for pointer types at compile time
*/
template
<
typename
T
,
bool
dummy
=
true
,
typename
std
::
enable_if
<
std
::
is_same
<
T
,
POINT
>
::
value
&&
std
::
is_pointer
<
T
>::
value
,
int
>::
type
=
0
>
Grid
(
std
::
vector
<
T
>
const
&
pnts
,
size_t
max_num_per_grid_cell
=
512
)
:
GeoLib
::
AABB
(),
_grid_cell_nodes_map
(
NULL
)
{
// compute axis aligned bounding box
const
size_t
n_pnts
(
pnts
.
size
());
for
(
size_t
k
(
0
);
k
<
n_pnts
;
k
++
)
{
this
->
update
(
pnts
[
k
]
->
getCoords
());
}
double
delta
[
3
]
=
{
0.0
,
0.0
,
0.0
};
for
(
size_t
k
(
0
);
k
<
3
;
k
++
)
{
// make the bounding box a little bit bigger,
// such that the node with maximal coordinates fits into the grid
_max_pnt
[
k
]
*=
(
1.0
+
1e-6
);
if
(
fabs
(
_max_pnt
[
k
])
<
std
::
numeric_limits
<
double
>::
epsilon
())
{
_max_pnt
[
k
]
=
(
_max_pnt
[
k
]
-
_min_pnt
[
k
])
*
(
1.0
+
1e-6
);
}
delta
[
k
]
=
_max_pnt
[
k
]
-
_min_pnt
[
k
];
}
// *** condition: n_pnts / (_n_steps[0] * _n_steps[1] * _n_steps[2]) < max_num_per_grid_cell
// *** with _n_steps[1] = _n_steps[0] * delta[1]/delta[0], _n_steps[2] = _n_steps[0] * delta[2]/delta[0]
if
(
fabs
(
delta
[
1
])
<
std
::
numeric_limits
<
double
>::
epsilon
()
||
fabs
(
delta
[
2
])
<
std
::
numeric_limits
<
double
>::
epsilon
())
{
// 1d case y = z = 0
if
(
fabs
(
delta
[
1
])
<
std
::
numeric_limits
<
double
>::
epsilon
()
&&
fabs
(
delta
[
2
])
<
std
::
numeric_limits
<
double
>::
epsilon
())
{
_n_steps
[
0
]
=
static_cast
<
size_t
>
(
ceil
(
n_pnts
/
(
double
)
max_num_per_grid_cell
));
_n_steps
[
1
]
=
1
;
_n_steps
[
2
]
=
1
;
}
else
{
// 1d case x = z = 0
if
(
fabs
(
delta
[
0
])
<
std
::
numeric_limits
<
double
>::
epsilon
()
&&
fabs
(
delta
[
2
])
<
std
::
numeric_limits
<
double
>::
epsilon
())
{
_n_steps
[
0
]
=
1
;
_n_steps
[
1
]
=
static_cast
<
size_t
>
(
ceil
(
n_pnts
/
(
double
)
max_num_per_grid_cell
));
_n_steps
[
2
]
=
1
;
}
else
{
// 1d case x = y = 0
if
(
fabs
(
delta
[
0
])
<
std
::
numeric_limits
<
double
>::
epsilon
()
&&
fabs
(
delta
[
1
])
<
std
::
numeric_limits
<
double
>::
epsilon
())
{
_n_steps
[
0
]
=
1
;
_n_steps
[
1
]
=
1
;
_n_steps
[
2
]
=
static_cast
<
size_t
>
(
ceil
(
n_pnts
/
(
double
)
max_num_per_grid_cell
));
}
else
{
// 2d case
if
(
fabs
(
delta
[
1
])
<
std
::
numeric_limits
<
double
>::
epsilon
())
{
_n_steps
[
0
]
=
static_cast
<
size_t
>
(
ceil
(
sqrt
(
n_pnts
*
delta
[
0
]
/
(
max_num_per_grid_cell
*
delta
[
2
]))));
_n_steps
[
1
]
=
1
;
_n_steps
[
2
]
=
static_cast
<
size_t
>
(
ceil
(
_n_steps
[
0
]
*
delta
[
2
]
/
delta
[
0
]));
}
else
{
_n_steps
[
0
]
=
static_cast
<
size_t
>
(
ceil
(
sqrt
(
n_pnts
*
delta
[
0
]
/
(
max_num_per_grid_cell
*
delta
[
1
]))));
_n_steps
[
1
]
=
static_cast
<
size_t
>
(
ceil
(
_n_steps
[
0
]
*
delta
[
1
]
/
delta
[
0
]));
_n_steps
[
2
]
=
1
;
}
}
}
}
}
else
{
// 3d case
_n_steps
[
0
]
=
static_cast
<
size_t
>
(
ceil
(
pow
(
n_pnts
*
delta
[
0
]
*
delta
[
0
]
/
(
max_num_per_grid_cell
*
delta
[
1
]
*
delta
[
2
]),
1.
/
3.
)));
_n_steps
[
1
]
=
static_cast
<
size_t
>
(
ceil
(
_n_steps
[
0
]
*
delta
[
1
]
/
delta
[
0
]));
_n_steps
[
2
]
=
static_cast
<
size_t
>
(
ceil
(
_n_steps
[
0
]
*
delta
[
2
]
/
delta
[
0
]));
}
const
size_t
n_plane
(
_n_steps
[
0
]
*
_n_steps
[
1
]);
_grid_cell_nodes_map
=
new
std
::
vector
<
typename
std
::
add_pointer
<
typename
std
::
remove_pointer
<
POINT
>::
type
>::
type
>
[
n_plane
*
_n_steps
[
2
]];
// some frequently used expressions to fill the grid vectors
for
(
size_t
k
(
0
);
k
<
3
;
k
++
)
{
_step_sizes
[
k
]
=
delta
[
k
]
/
_n_steps
[
k
];
_inverse_step_sizes
[
k
]
=
1.0
/
_step_sizes
[
k
];
}
// fill the grid vectors
for
(
size_t
l
(
0
);
l
<
n_pnts
;
l
++
)
{
double
const
*
const
pnt
(
pnts
[
l
]
->
getCoords
());
const
size_t
i
(
static_cast
<
size_t
>
((
pnt
[
0
]
-
_min_pnt
[
0
])
*
_inverse_step_sizes
[
0
]));
const
size_t
j
(
static_cast
<
size_t
>
((
pnt
[
1
]
-
_min_pnt
[
1
])
*
_inverse_step_sizes
[
1
]));
const
size_t
k
(
static_cast
<
size_t
>
((
pnt
[
2
]
-
_min_pnt
[
2
])
*
_inverse_step_sizes
[
2
]));
if
(
i
>=
_n_steps
[
0
]
||
j
>=
_n_steps
[
1
]
||
k
>=
_n_steps
[
2
])
{
std
::
cout
<<
"error computing indices "
<<
std
::
endl
;
}
_grid_cell_nodes_map
[
i
+
j
*
_n_steps
[
0
]
+
k
*
n_plane
].
push_back
(
pnts
[
l
]);
_grid_cell_nodes_map
[
i
+
j
*
_n_steps
[
0
]
+
k
*
n_plane
].
push_back
(
copyOrAddress
(
*
it
));
}
#ifndef NDEBUG
...
...
@@ -285,14 +170,13 @@ public:
* @return a pointer to the point with the smallest distance within the grid cells that are
* outlined above or NULL
*/
const
typename
std
::
add_pointer
<
typename
std
::
remove_pointer
<
POINT
>::
type
>::
type
getNearestPoint
(
double
const
*
const
pnt
)
const
POINT
*
getNearestPoint
(
double
const
*
const
pnt
)
const
{
size_t
coords
[
3
];
getGridCoords
(
pnt
,
coords
);
double
sqr_min_dist
(
MathLib
::
sqrDist
(
&
_min_pnt
,
&
_max_pnt
));
typename
std
::
add_pointer
<
typename
std
::
remove_pointer
<
POINT
>::
type
>::
type
nearest_pnt
(
NULL
);
POINT
*
nearest_pnt
(
NULL
);
double
dists
[
6
];
getPointCellBorderDistances
(
pnt
,
dists
,
coords
);
...
...
@@ -310,7 +194,7 @@ public:
}
else
{
// search in all border cells for at least one neighbor
double
sqr_min_dist_tmp
;
typename
std
::
add_pointer
<
typename
std
::
remove_pointer
<
POINT
>::
type
>::
type
nearest_pnt_tmp
(
NULL
);
POINT
*
nearest_pnt_tmp
(
NULL
);
size_t
offset
(
1
);
while
(
nearest_pnt
==
NULL
)
{
...
...
@@ -339,12 +223,12 @@ public:
double
len
(
sqrt
(
MathLib
::
sqrDist
(
pnt
,
nearest_pnt
->
getCoords
())));
// search all other grid cells within the cube with the edge nodes
std
::
vector
<
std
::
vector
<
typename
std
::
add_pointer
<
typename
std
::
remove_pointer
<
POINT
>::
type
>::
type
>
const
*>
vecs_of_pnts
;
std
::
vector
<
std
::
vector
<
POINT
*
>
const
*>
vecs_of_pnts
;
getVecsOfGridCellsIntersectingCube
(
pnt
,
len
,
vecs_of_pnts
);
const
size_t
n_vecs
(
vecs_of_pnts
.
size
());
for
(
size_t
j
(
0
);
j
<
n_vecs
;
j
++
)
{
std
::
vector
<
typename
std
::
add_pointer
<
typename
std
::
remove_pointer
<
POINT
>::
type
>::
type
>
const
&
pnts
(
*
(
vecs_of_pnts
[
j
]));
std
::
vector
<
POINT
*
>
const
&
pnts
(
*
(
vecs_of_pnts
[
j
]));
const
size_t
n_pnts
(
pnts
.
size
());
for
(
size_t
k
(
0
);
k
<
n_pnts
;
k
++
)
{
const
double
sqr_dist
(
MathLib
::
sqrDist
(
pnt
,
pnts
[
k
]
->
getCoords
()));
...
...
@@ -367,7 +251,7 @@ public:
* @param pnts (output) vector of vectors of points within grid cells that intersects
* the axis aligned cube
*/
void
getVecsOfGridCellsIntersectingCube
(
double
const
*
const
pnt
,
double
half_len
,
std
::
vector
<
std
::
vector
<
POINT
>
const
*>&
pnts
)
const
;
void
getVecsOfGridCellsIntersectingCube
(
double
const
*
const
pnt
,
double
half_len
,
std
::
vector
<
std
::
vector
<
POINT
*
>
const
*>&
pnts
)
const
;
#ifndef NDEBUG
/**
...
...
@@ -422,7 +306,7 @@ private:
bool
calcNearestPointInGridCell
(
double
const
*
const
pnt
,
size_t
const
*
const
coords
,
double
&
sqr_min_dist
,
typename
std
::
add_pointer
<
typename
std
::
remove_pointer
<
POINT
>::
type
>::
type
&
nearest_pnt
)
const
POINT
*
&
nearest_pnt
)
const
{
const
size_t
grid_idx
(
coords
[
0
]
+
coords
[
1
]
*
_n_steps
[
0
]
+
coords
[
2
]
*
_n_steps
[
0
]
*
_n_steps
[
1
]);
std
::
vector
<
typename
std
::
add_pointer
<
typename
std
::
remove_pointer
<
POINT
>::
type
>::
type
>
const
&
pnts
(
_grid_cell_nodes_map
[
grid_idx
]);
...
...
@@ -440,20 +324,22 @@ private:
}
return
true
;
}
static
POINT
*
copyOrAddress
(
POINT
&
p
)
{
return
&
p
;
}
static
POINT
*
copyOrAddress
(
POINT
*
p
)
{
return
p
;
}
double
_step_sizes
[
3
];
double
_inverse_step_sizes
[
3
];
size_t
_n_steps
[
3
];
/**
* This is an array that stores pointers to POINT objects. If POINT is a pointer type,
* std::remove_pointer returns the "base" type, else the POINT type is returned. Then,
* the base type is converted to a pointer type emploing std::add_pointer.
* This is an array that stores pointers to POINT objects.
*/
std
::
vector
<
typename
std
::
add_pointer
<
typename
std
::
remove_pointer
<
POINT
>::
type
>::
type
>*
_grid_cell_nodes_map
;
std
::
vector
<
POINT
*
>*
_grid_cell_nodes_map
;
};
template
<
typename
POINT
>
void
Grid
<
POINT
>::
getVecsOfGridCellsIntersectingCube
(
double
const
*
const
pnt
,
double
half_len
,
std
::
vector
<
std
::
vector
<
POINT
>
const
*>&
pnts
)
const
std
::
vector
<
std
::
vector
<
POINT
*
>
const
*>&
pnts
)
const
{
double
tmp_pnt
[
3
]
=
{
pnt
[
0
]
-
half_len
,
pnt
[
1
]
-
half_len
,
pnt
[
2
]
-
half_len
};
// min
size_t
min_coords
[
3
];
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment