Skip to content
Snippets Groups Projects
Commit e6e057ab authored by wenqing's avatar wenqing
Browse files

[BGRa] Changed one member name and improved the documentation

parent 620e2f68
No related branches found
No related tags found
No related merge requests found
Parameter A. A parameter determined by experiments. Its unit is 1/[time unit].
\ No newline at end of file
Parameter n. A dimensionless parameter determined by experiments.
\ No newline at end of file
Parameter Q. Activation energy. Its unit is J/mol.
\ No newline at end of file
Parameter sigma_0. A stress scaling factor. Its unit is the stress unit.
...@@ -45,7 +45,7 @@ CreepBGRa<DisplacementDim>::integrateStress( ...@@ -45,7 +45,7 @@ CreepBGRa<DisplacementDim>::integrateStress(
const double b = const double b =
dt * _coef * dt * _coef *
std::exp(-_Q / (MaterialLib::PhysicalConstant::IdealGasConstant * T)); std::exp(-_q / (MaterialLib::PhysicalConstant::IdealGasConstant * T));
auto const& deviatoric_matrix = Invariants::deviatoric_projection; auto const& deviatoric_matrix = Invariants::deviatoric_projection;
double pow_norm_s_n1_n_minus_one_2b_G = 0.; double pow_norm_s_n1_n_minus_one_2b_G = 0.;
...@@ -101,10 +101,10 @@ double CreepBGRa<DisplacementDim>::getTemperatureRelatedCoefficient( ...@@ -101,10 +101,10 @@ double CreepBGRa<DisplacementDim>::getTemperatureRelatedCoefficient(
double const T, double const deviatoric_stress_norm) const double const T, double const deviatoric_stress_norm) const
{ {
return 2.0 * _coef * return 2.0 * _coef *
std::exp(-_Q / std::exp(-_q /
(MaterialLib::PhysicalConstant::IdealGasConstant * T)) * (MaterialLib::PhysicalConstant::IdealGasConstant * T)) *
this->_mp.mu(t, x) * std::pow(deviatoric_stress_norm, _n - 1) * dt * this->_mp.mu(t, x) * std::pow(deviatoric_stress_norm, _n - 1) * dt *
_Q / (MaterialLib::PhysicalConstant::IdealGasConstant * T * T); _q / (MaterialLib::PhysicalConstant::IdealGasConstant * T * T);
} }
template class CreepBGRa<2>; template class CreepBGRa<2>;
......
...@@ -52,7 +52,7 @@ public: ...@@ -52,7 +52,7 @@ public:
std::unique_ptr< std::unique_ptr<
typename MechanicsBase<DisplacementDim>::MaterialStateVariables> typename MechanicsBase<DisplacementDim>::MaterialStateVariables>
createMaterialStateVariables() override createMaterialStateVariables()
{ {
return LinearElasticIsotropic< return LinearElasticIsotropic<
DisplacementDim>::createMaterialStateVariables(); DisplacementDim>::createMaterialStateVariables();
...@@ -66,7 +66,7 @@ public: ...@@ -66,7 +66,7 @@ public:
_nonlinear_solver_parameters(std::move(nonlinear_solver_parameters)), _nonlinear_solver_parameters(std::move(nonlinear_solver_parameters)),
_n(n), _n(n),
_coef(A * std::pow(1.5, 0.5 * (1 + _n)) / std::pow(sigma0, _n)), _coef(A * std::pow(1.5, 0.5 * (1 + _n)) / std::pow(sigma0, _n)),
_Q(Q) _q(Q)
{ {
} }
...@@ -93,10 +93,10 @@ public: ...@@ -93,10 +93,10 @@ public:
private: private:
NumLib::NewtonRaphsonSolverParameters const _nonlinear_solver_parameters; NumLib::NewtonRaphsonSolverParameters const _nonlinear_solver_parameters;
const double _n; const double _n; /// parameter determined by experiments.
/// $fA\left(\frac{3}{2}\right)^{n/2+1}/\sigma_{eff}^n $f /// $fA\left(\frac{3}{2}\right)^{n/2+1}/\sigma_{eff}^n $f
const double _coef; const double _coef;
const double _Q; const double _q; /// Activation energy
}; };
extern template class CreepBGRa<2>; extern template class CreepBGRa<2>;
......
...@@ -72,10 +72,10 @@ $$\begin{gathered} ...@@ -72,10 +72,10 @@ $$\begin{gathered}
where where
$\mathbf{C}:= \lambda \mathcal{J} + 2G \mathbf I \otimes \mathbf I $ $\mathbf{C}:= \lambda \mathcal{J} + 2G \mathbf I \otimes \mathbf I $
with $\mathcal{J}$ the forth order identity, $\mathbf I$ the second order identity, with $\mathcal{J}$ the forth order identity, $\mathbf I$ the second order identity,
$\lambda$ the Lame constant, $G$ the shear module, and $\otimes$ the tensor $\lambda$ the Lamé constant, $G$ the shear modulus, and $\otimes$ the tensor
product notation. product notation.
is a forth order tensor. Substituting equation and the expression of $C$ is a fourth order tensor. Substituting equation and the expression of $C$
into the stress rate expression, equation , we have into the stress rate expression, equation , we have
$$\begin{gathered} $$\begin{gathered}
\dot { \mathbf \sigma}= \mathbf{C} \dot { \mathbf \epsilon}- 2bG {\left\Vert{\mathbf s}\right\Vert}^{m-1} \dot { \mathbf \sigma}= \mathbf{C} \dot { \mathbf \epsilon}- 2bG {\left\Vert{\mathbf s}\right\Vert}^{m-1}
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment