Forked from
ogs / ogs
24559 commits behind the upstream repository.
-
Karsten Rink authoredKarsten Rink authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
AnalyticalGeometry.cpp 11.45 KiB
/**
* \file
* \author Thomas Fischer
* \date 2010-03-17
* \brief Implementation of analytical geometry functions.
*
* \copyright
* Copyright (c) 2013, OpenGeoSys Community (http://www.opengeosys.org)
* Distributed under a Modified BSD License.
* See accompanying file LICENSE.txt or
* http://www.opengeosys.org/project/license
*
*/
#include "AnalyticalGeometry.h"
#include <algorithm>
#include <cmath>
#include <cstdlib> // for exit
#include <fstream>
#include <limits>
#include <list>
// BaseLib
#include "quicksort.h"
// GeoLib
#include "Polyline.h"
#include "Triangle.h"
// MathLib
#include "LinAlg/Solvers/GaussAlgorithm.h"
#include "MathTools.h"
namespace GeoLib
{
Orientation getOrientation(const double& p0_x, const double& p0_y, const double& p1_x,
const double& p1_y, const double& p2_x, const double& p2_y)
{
double h1((p1_x - p0_x) * (p2_y - p0_y));
double h2((p2_x - p0_x) * (p1_y - p0_y));
double tol(sqrt( std::numeric_limits<double>::min()));
if (fabs(h1 - h2) <= tol * std::max(fabs(h1), fabs(h2)))
return COLLINEAR;
if (h1 - h2 > 0.0)
return CCW;
return CW;
}
Orientation getOrientation(const GeoLib::Point* p0, const GeoLib::Point* p1,
const GeoLib::Point* p2)
{
return getOrientation((*p0)[0], (*p0)[1], (*p1)[0], (*p1)[1], (*p2)[0], (*p2)[1]);
}
bool lineSegmentIntersect(const GeoLib::Point& a, const GeoLib::Point& b, const GeoLib::Point& c,
const GeoLib::Point& d, GeoLib::Point& s)
{
MathLib::DenseMatrix<double> mat(2, 2);
mat(0, 0) = b[0] - a[0];
mat(1, 0) = b[1] - a[1];
mat(0,1) = c[0] - d[0];
mat(1,1) = c[1] - d[1];
// check if vectors are parallel
double eps (sqrt(std::numeric_limits<double>::min()));
if (fabs(mat(1,1)) < eps) {
// vector (D-C) is parallel to x-axis
if (fabs(mat(0,1)) < eps) {
// vector (B-A) is parallel to x-axis
return false;
}
} else {
// vector (D-C) is not parallel to x-axis
if (fabs(mat(0,1)) >= eps) {
// vector (B-A) is not parallel to x-axis
// \f$(B-A)\f$ and \f$(D-C)\f$ are parallel iff there exists
// a constant \f$c\f$ such that \f$(B-A) = c (D-C)\f$
if (fabs (mat(0,0) / mat(0,1) - mat(1,0) / mat(1,1)) < eps * fabs (mat(0,0) / mat(0,1)))
return false;
}
}
double *rhs (new double[2]);
rhs[0] = c[0] - a[0];
rhs[1] = c[1] - a[1];
MathLib::GaussAlgorithm<MathLib::DenseMatrix<double>, double*> lu_solver (mat);
lu_solver.solve (rhs);
if (0 <= rhs[0] && rhs[0] <= 1.0 && 0 <= rhs[1] && rhs[1] <= 1.0) {
s[0] = a[0] + rhs[0] * (b[0] - a[0]);
s[1] = a[1] + rhs[0] * (b[1] - a[1]);
s[2] = a[2] + rhs[0] * (b[2] - a[2]);
// check z component
double z0 (a[2] - d[2]), z1(rhs[0] * (b[2] - a[2]) + rhs[1] * (d[2] - c[2]));
delete [] rhs;
if (std::fabs (z0 - z1) < eps)
return true;
else
return false;
}
else
delete [] rhs;
return false;
}
bool lineSegmentsIntersect(const GeoLib::Polyline* ply,
size_t &idx0,
size_t &idx1,
GeoLib::Point& intersection_pnt)
{
size_t n_segs(ply->getNumberOfPoints() - 1);
/**
* computing the intersections of all possible pairs of line segments of the given polyline
* as follows:
* let the segment \f$s_1 = (A,B)\f$ defined by \f$k\f$-th and \f$k+1\f$-st point
* of the polyline and segment \f$s_2 = (C,B)\f$ defined by \f$j\f$-th and
* \f$j+1\f$-st point of the polyline, \f$j>k+1\f$
*/
for (size_t k(0); k < n_segs - 2; k++) {
for (size_t j(k + 2); j < n_segs; j++) {
if (k != 0 || j < n_segs - 1) {
if (lineSegmentIntersect(*(ply->getPoint(k)), *(ply->getPoint(k + 1)),
*(ply->getPoint(j)), *(ply->getPoint(j + 1)),
intersection_pnt)) {
idx0 = k;
idx1 = j;
return true;
}
}
}
}
return false;
}
static
bool isPointInTriangle(const double p[3], const double a[3], const double b[3], const double c[3])
{
// criterion: p-b = u0 * (b - a) + u1 * (b - c); 0 <= u0, u1 <= 1, u0+u1 <= 1
MathLib::DenseMatrix<double> mat(2, 2);
mat(0, 0) = a[0] - b[0];
mat(0, 1) = c[0] - b[0];
mat(1, 0) = a[1] - b[1];
mat(1, 1) = c[1] - b[1];
double rhs[2] = { p[0] - b[0], p[1] - b[1] };
MathLib::GaussAlgorithm<MathLib::DenseMatrix<double>, double*> gauss(mat);
gauss.solve(rhs);
if (0 <= rhs[0] && rhs[0] <= 1 && 0 <= rhs[1] && rhs[1] <= 1 && rhs[0] + rhs[1] <= 1)
return true;
return false;
}
bool isPointInTriangle(const GeoLib::Point* p, const GeoLib::Point* a, const GeoLib::Point* b,
const GeoLib::Point* c)
{
return isPointInTriangle(p->getCoords(), a->getCoords(), b->getCoords(), c->getCoords());
}
static
double getOrientedTriArea(GeoLib::Point const& a, GeoLib::Point const& b, GeoLib::Point const& c)
{
const double u[3] = { c[0] - a[0], c[1] - a[1], c[2] - a[2] };
const double v[3] = { b[0] - a[0], b[1] - a[1], b[2] - a[2] };
double w[3];
MathLib::crossProd(u, v, w);
return 0.5 * sqrt(MathLib::scpr<double, 3>(w, w));
}
bool isPointInTriangle(GeoLib::Point const& p, GeoLib::Point const& a, GeoLib::Point const& b,
GeoLib::Point const& c, double eps)
{
const unsigned dim(3);
MathLib::DenseMatrix<double> m(dim, dim);
for (unsigned i(0); i < dim; i++)
m(i, 0) = b[i] - a[i];
for (unsigned i(0); i < dim; i++)
m(i, 1) = c[i] - a[i];
for (unsigned i(0); i < dim; i++)
m(i, 2) = p[i] - a[i];
// point p is in the same plane as the triangle if and only if
// the following determinate of the 3x3 matrix equals zero (up to an eps)
double det3x3(m(0, 0) * (m(1, 1) * m(2, 2) - m(2, 1) * m(1, 2))
- m(1, 0) * (m(2, 1) * m(0, 2) - m(0, 1) * m(2, 2))
+ m(2, 0) * (m(0, 1) * m(1, 2) - m(1, 1) * m(0, 2)));
if (fabs(det3x3) > eps)
return false;
double total_area(getOrientedTriArea(a, b, c));
double abp_area(getOrientedTriArea(a, b, p));
double bcp_area(getOrientedTriArea(b, c, p));
double cap_area(getOrientedTriArea(c, a, p));
if (fabs(abp_area + bcp_area + cap_area - total_area) < eps)
return true;
return false;
}
// NewellPlane from book Real-Time Collision detection p. 494
void getNewellPlane(const std::vector<GeoLib::Point*>& pnts, MathLib::Vector3 &plane_normal, double& d)
{
d = 0;
MathLib::Vector3 centroid;
size_t n_pnts(pnts.size());
for (size_t i(n_pnts - 1), j(0); j < n_pnts; i = j, j++) {
plane_normal[0] += ((*(pnts[i]))[1] - (*(pnts[j]))[1])
* ((*(pnts[i]))[2] + (*(pnts[j]))[2]); // projection on yz
plane_normal[1] += ((*(pnts[i]))[2] - (*(pnts[j]))[2])
* ((*(pnts[i]))[0] + (*(pnts[j]))[0]); // projection on xz
plane_normal[2] += ((*(pnts[i]))[0] - (*(pnts[j]))[0])
* ((*(pnts[i]))[1] + (*(pnts[j]))[1]); // projection on xy
centroid += *(pnts[j]);
}
plane_normal *= 1.0 / plane_normal.Length();
d = centroid.Dot(plane_normal) / n_pnts;
}
void rotatePointsToXY(MathLib::Vector3 &plane_normal, std::vector<GeoLib::Point*> &pnts)
{
double small_value(sqrt( std::numeric_limits<double>::min()));
if (fabs(plane_normal[0]) < small_value && fabs(plane_normal[1]) < small_value)
return;
MathLib::DenseMatrix<double> rot_mat(3, 3);
computeRotationMatrixToXY(plane_normal, rot_mat);
rotatePoints(rot_mat, pnts);
double* tmp(rot_mat * plane_normal.getCoords());
for (std::size_t j(0); j < 3; j++)
plane_normal[j] = tmp[j];
delete[] tmp;
}
void rotatePointsToXZ(MathLib::Vector3 &n, std::vector<GeoLib::Point*> &pnts)
{
double small_value(sqrt( std::numeric_limits<double>::min()));
if (fabs(n[0]) < small_value && fabs(n[1]) < small_value)
return;
// *** some frequently used terms ***
// n_1^2 + n_2^2
const double h0(n[0] * n[0] + n[1] * n[1]);
// 1 / sqrt (n_1^2 + n_2^2)
const double h1(1.0 / sqrt(h0));
// 1 / sqrt (n_1^2 + n_2^2 + n_3^2)
const double h2(1.0 / sqrt(h0 + n[2] * n[2]));
MathLib::DenseMatrix<double> rot_mat(3, 3);
// calc rotation matrix
rot_mat(0, 0) = n[1] * h1;
rot_mat(0, 1) = -n[0] * h1;
rot_mat(0, 2) = 0.0;
rot_mat(1, 0) = n[0] * h2;
rot_mat(1, 1) = n[1] * h2;
rot_mat(1, 2) = n[2] * h2;
rot_mat(2, 0) = n[0] * n[2] * h1 * h2;
rot_mat(2, 1) = n[1] * n[2] * h1 * h2;
rot_mat(2, 2) = -sqrt(h0) * h2;
rotatePoints(rot_mat, pnts);
double *tmp(rot_mat * n.getCoords());
for (std::size_t j(0); j < 3; j++)
n[j] = tmp[j];
delete[] tmp;
}
void computeRotationMatrixToXY(MathLib::Vector3 const& plane_normal, MathLib::DenseMatrix<double> & rot_mat)
{
// *** some frequently used terms ***
// sqrt (v_1^2 + v_2^2)
double h0(sqrt(plane_normal[0] * plane_normal[0] + plane_normal[1]
* plane_normal[1]));
// 1 / sqrt (v_1^2 + v_2^2)
double h1(1 / h0);
// 1 / sqrt (h0 + v_3^2)
double h2(1.0 / sqrt(h0 + plane_normal[2] * plane_normal[2]));
// calculate entries of rotation matrix
rot_mat(0, 0) = plane_normal[2] * plane_normal[0] * h2 * h1;
rot_mat(0, 1) = plane_normal[2] * plane_normal[1] * h2 * h1;
rot_mat(0, 2) = -h0 * h2;
rot_mat(1, 0) = -plane_normal[1] * h1;
rot_mat(1, 1) = plane_normal[0] * h1;
rot_mat(1, 2) = 0.0;
rot_mat(2, 0) = plane_normal[0] * h2;
rot_mat(2, 1) = plane_normal[1] * h2;
rot_mat(2, 2) = plane_normal[2] * h2;
}
void rotatePoints(MathLib::DenseMatrix<double> const& rot_mat, std::vector<GeoLib::Point*> &pnts)
{
double* tmp (NULL);
const std::size_t n_pnts(pnts.size());
for (std::size_t k(0); k < n_pnts; k++) {
tmp = rot_mat * pnts[k]->getCoords();
for (std::size_t j(0); j < 3; j++)
(*(pnts[k]))[j] = tmp[j];
delete [] tmp;
}
}
GeoLib::Point* triangleLineIntersection(GeoLib::Point const& a, GeoLib::Point const& b, GeoLib::Point const& c, GeoLib::Point const& p, GeoLib::Point const& q)
{
const GeoLib::Point pq(q[0]-p[0], q[1]-p[1], q[2]-p[2]);
const GeoLib::Point pa(a[0]-p[0], a[1]-p[1], a[2]-p[2]);
const GeoLib::Point pb(b[0]-p[0], b[1]-p[1], b[2]-p[2]);
const GeoLib::Point pc(c[0]-p[0], c[1]-p[1], c[2]-p[2]);
double u (scalarTriple(pq, pc, pb));
if (u<0) return nullptr;
double v (scalarTriple(pq, pa, pc));
if (v<0) return nullptr;
double w (scalarTriple(pq, pb, pa));
if (w<0) return nullptr;
const double denom (1.0/(u+v+w));
u*=denom;
v*=denom;
w*=denom;
return new GeoLib::Point(u*a[0]+v*b[0]+w*c[0],u*a[1]+v*b[1]+w*c[1],u*a[2]+v*b[2]+w*c[2]);
}
double scalarTriple(GeoLib::Point const& u, GeoLib::Point const& v, GeoLib::Point const& w)
{
double cross[3];
MathLib::crossProd(u.getCoords(), v.getCoords(), cross);
double result(0);
for (unsigned i=0; i<3; ++i)
result+=(cross[i]*w[i]);
return result;
}
bool dividedByPlane(const GeoLib::Point& a, const GeoLib::Point& b, const GeoLib::Point& c, const GeoLib::Point& d)
{
for (unsigned x=0; x<3; ++x)
{
const unsigned y=(x+1)%3;
const double abc = (b[x] - a[x])*(c[y] - a[y]) - (b[y] - a[y])*(c[x] - a[x]);
const double abd = (b[x] - a[x])*(d[y] - a[y]) - (b[y] - a[y])*(d[x] - a[x]);
if ((abc>0 && abd<0) || (abc<0 && abd>0))
return true;
}
return false;
}
bool isCoplanar(const GeoLib::Point& a, const GeoLib::Point& b, const GeoLib::Point& c, const GeoLib::Point& d)
{
const GeoLib::Point AB(b[0]-a[0], b[1]-a[1], b[2]-a[2]);
const GeoLib::Point AC(c[0]-a[0], c[1]-a[1], c[2]-a[2]);
const GeoLib::Point AD(d[0]-a[0], d[1]-a[1], d[2]-a[2]);
double squared_scalar_triple = pow(GeoLib::scalarTriple(AC, AD, AB), 2);
double normalisation_factor = (AB[0]*AB[0]+AB[1]*AB[1]+AB[2]*AB[2]) *
(AC[0]*AC[0]+AC[1]*AC[1]+AC[2]*AC[2]) *
(AD[0]*AD[0]+AD[1]*AD[1]+AD[2]*AD[2]);
return (squared_scalar_triple/normalisation_factor < std::numeric_limits<double>::epsilon());
}
} // end namespace GeoLib