Skip to content
Snippets Groups Projects
Commit 2e90a026 authored by wenqing's avatar wenqing
Browse files

[SaturationVanGenuchten] Corrected two errors in the documentation

parent b2fc7d5d
No related branches found
No related tags found
No related merge requests found
......@@ -16,7 +16,7 @@ class Medium;
class Phase;
class Component;
/**
* \brief The van Genuchten capillary pressure model.
* \brief The van Genuchten capillary pressure model:
*
* \f[p_c(S)=p_b (S_e^{-1/m}-1)^{1-m}\f]
* with
......@@ -26,22 +26,28 @@ class Component;
* &p_b& \mbox{ entry pressure,}\\
* &S_r& \mbox{ residual saturation,}\\
* &S_{\mbox{max}}& \mbox{ maximum saturation,}\\
* &m(<=1) & \mbox{ exponent.}\\
* &m \in [0,1) & \mbox{ exponent.}\\
* \f}
*
* Note:
* \f[m=1/(1-n)\f].
* Note in some expressions, a parameter of \f$n\f$ is introduced, where
* \f[n=1/(1-m)\f].
*
* If \f$\alpha\f$ instead of \f$p_b\f$ is available, \f$p_b\f$ can
* be calculated
* as
* \f[p_b=\rho g/\alpha\f]
* \f[p_b=\rho g/\alpha\f].
*
* If the capillary pressure is known, the saturation can be
* obtained by this model with
* \f[S(p_c)=
* \left( \left(\dfrac{p_c}{p_b}\right)^{\frac{1}{m}} +1\right)^{-m}
* (S_{\mbox{max}}-S_r) +S_r \f]
* \f[S(p_c)=\left \{
* \begin{array}{1}
* S_{\mbox{max}},\, p_c < 0,\\
* \left( \left(\dfrac{p_c}{p_b}\right)^{\frac{1}{1-m}} +1\right)^{-m}
* (S_{\mbox{max}}-S_r) +S_r,\, p_c \geq 0
\end{array}
* \right.
* \f].
*
* class SaturationVanGenuchten handles the computations associated
* with \f$S(p_c)\f$.
*/
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment