Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
O
ogs
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Özgür Ozan Sen
ogs
Commits
2e90a026
Commit
2e90a026
authored
5 years ago
by
wenqing
Browse files
Options
Downloads
Patches
Plain Diff
[SaturationVanGenuchten] Corrected two errors in the documentation
parent
b2fc7d5d
No related branches found
Branches containing commit
No related tags found
Tags containing commit
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
MaterialLib/MPL/Properties/CapillaryPressureSaturation/SaturationVanGenuchten.h
+14
-8
14 additions, 8 deletions
...ties/CapillaryPressureSaturation/SaturationVanGenuchten.h
with
14 additions
and
8 deletions
MaterialLib/MPL/Properties/CapillaryPressureSaturation/SaturationVanGenuchten.h
+
14
−
8
View file @
2e90a026
...
...
@@ -16,7 +16,7 @@ class Medium;
class
Phase
;
class
Component
;
/**
* \brief The van Genuchten capillary pressure model
.
* \brief The van Genuchten capillary pressure model
:
*
* \f[p_c(S)=p_b (S_e^{-1/m}-1)^{1-m}\f]
* with
...
...
@@ -26,22 +26,28 @@ class Component;
* &p_b& \mbox{ entry pressure,}\\
* &S_r& \mbox{ residual saturation,}\\
* &S_{\mbox{max}}& \mbox{ maximum saturation,}\\
* &m
(<=
1) & \mbox{ exponent.}\\
* &m
\in [0,
1) & \mbox{ exponent.}\\
* \f}
*
* Note
:
* \f[
m
=1/(1-
n
)\f].
* Note
in some expressions, a parameter of \f$n\f$ is introduced, where
* \f[
n
=1/(1-
m
)\f].
*
* If \f$\alpha\f$ instead of \f$p_b\f$ is available, \f$p_b\f$ can
* be calculated
* as
* \f[p_b=\rho g/\alpha\f]
* \f[p_b=\rho g/\alpha\f]
.
*
* If the capillary pressure is known, the saturation can be
* obtained by this model with
* \f[S(p_c)=
* \left( \left(\dfrac{p_c}{p_b}\right)^{\frac{1}{m}} +1\right)^{-m}
* (S_{\mbox{max}}-S_r) +S_r \f]
* \f[S(p_c)=\left \{
* \begin{array}{1}
* S_{\mbox{max}},\, p_c < 0,\\
* \left( \left(\dfrac{p_c}{p_b}\right)^{\frac{1}{1-m}} +1\right)^{-m}
* (S_{\mbox{max}}-S_r) +S_r,\, p_c \geq 0
\end{array}
* \right.
* \f].
*
* class SaturationVanGenuchten handles the computations associated
* with \f$S(p_c)\f$.
*/
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment