Forked from
ogs / ogs
14456 commits behind the upstream repository.
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
CreateHTProcess.cpp 11.12 KiB
/**
* \copyright
* Copyright (c) 2012-2019, OpenGeoSys Community (http://www.opengeosys.org)
* Distributed under a Modified BSD License.
* See accompanying file LICENSE.txt or
* http://www.opengeosys.org/project/license
*
*/
#include "CreateHTProcess.h"
#include "MaterialLib/Fluid/FluidProperties/CreateFluidProperties.h"
#include "MaterialLib/MPL/CreateMaterialSpatialDistributionMap.h"
#include "MaterialLib/PorousMedium/CreatePorousMediaProperties.h"
#include "MeshLib/IO/readMeshFromFile.h"
#include "ParameterLib/ConstantParameter.h"
#include "ParameterLib/Utils.h"
#include "ProcessLib/Output/CreateSecondaryVariables.h"
#include "ProcessLib/SurfaceFlux/SurfaceFluxData.h"
#include "ProcessLib/Utils/ProcessUtils.h"
#include "HTProcess.h"
#include "HTMaterialProperties.h"
#include "HTLocalAssemblerInterface.h"
namespace ProcessLib
{
namespace HT
{
std::unique_ptr<Process> createHTProcess(
MeshLib::Mesh& mesh,
std::unique_ptr<ProcessLib::AbstractJacobianAssembler>&& jacobian_assembler,
std::vector<ProcessVariable> const& variables,
std::vector<std::unique_ptr<ParameterLib::ParameterBase>> const& parameters,
unsigned const integration_order,
BaseLib::ConfigTree const& config,
std::vector<std::unique_ptr<MeshLib::Mesh>> const& meshes,
std::string const& output_directory,
std::map<int, std::unique_ptr<MaterialPropertyLib::Medium>> const& media)
{
//! \ogs_file_param{prj__processes__process__type}
config.checkConfigParameter("type", "HT");
DBUG("Create HTProcess.");
auto const staggered_scheme =
//! \ogs_file_param{prj__processes__process__HT__coupling_scheme}
config.getConfigParameterOptional<std::string>("coupling_scheme");
const bool use_monolithic_scheme =
!(staggered_scheme && (*staggered_scheme == "staggered"));
// Process variable.
//! \ogs_file_param{prj__processes__process__HT__process_variables}
auto const pv_config = config.getConfigSubtree("process_variables");
std::vector<std::vector<std::reference_wrapper<ProcessVariable>>>
process_variables;
if (use_monolithic_scheme) // monolithic scheme.
{
auto per_process_variables = findProcessVariables(
variables, pv_config,
{//! \ogs_file_param_special{prj__processes__process__HT__process_variables__temperature}
"temperature",
//! \ogs_file_param_special{prj__processes__process__HT__process_variables__pressure}
"pressure"});
process_variables.push_back(std::move(per_process_variables));
}
else // staggered scheme.
{
using namespace std::string_literals;
for (auto const& variable_name : {"temperature"s, "pressure"s})
{
auto per_process_variables =
findProcessVariables(variables, pv_config, {variable_name});
process_variables.push_back(std::move(per_process_variables));
}
}
// Process IDs, which are set according to the appearance order of the
// process variables.
const int _heat_transport_process_id = 0;
const int _hydraulic_process_id = 1;
MaterialLib::PorousMedium::PorousMediaProperties porous_media_properties{
MaterialLib::PorousMedium::createPorousMediaProperties(mesh, config,
parameters)};
//! \ogs_file_param{prj__processes__process__HT__fluid}
auto const& fluid_config = config.getConfigSubtree("fluid");
auto fluid_properties =
MaterialLib::Fluid::createFluidProperties(fluid_config);
// Parameter for the density of the solid.
auto& density_solid = ParameterLib::findParameter<double>(
config,
//! \ogs_file_param_special{prj__processes__process__HT__density_solid}
"density_solid", parameters, 1);
DBUG("Use '%s' as density_solid parameter.", density_solid.name.c_str());
// Parameter for the specific heat capacity of the solid.
auto& specific_heat_capacity_solid = ParameterLib::findParameter<double>(
config,
//! \ogs_file_param_special{prj__processes__process__HT__specific_heat_capacity_solid}
"specific_heat_capacity_solid", parameters, 1);
DBUG("Use '%s' as specific_heat_capacity_solid parameter.",
specific_heat_capacity_solid.name.c_str());
// Parameter for the thermal conductivity of the solid (only one scalar per
// element, i.e., the isotropic case is handled at the moment)
ParameterLib::ConstantParameter<double>
default_thermal_dispersivity_longitudinal(
"default thermal dispersivity longitudinal", 0.);
ParameterLib::ConstantParameter<double>
default_thermal_dispersivity_transversal(
"default thermal dispersivity transversal", 0.);
ParameterLib::Parameter<double>* thermal_dispersivity_longitudinal =
&default_thermal_dispersivity_longitudinal;
ParameterLib::Parameter<double>* thermal_dispersivity_transversal =
&default_thermal_dispersivity_transversal;
auto const dispersion_config =
//! \ogs_file_param{prj__processes__process__HT__thermal_dispersivity}
config.getConfigSubtreeOptional("thermal_dispersivity");
bool const has_fluid_thermal_dispersivity =
static_cast<bool>(dispersion_config);
if (dispersion_config)
{
thermal_dispersivity_longitudinal = &ParameterLib::findParameter<
double>(
*dispersion_config,
//! \ogs_file_param_special{prj__processes__process__HT__thermal_dispersivity__longitudinal}
"longitudinal", parameters, 1);
DBUG("Use '%s' as thermal_dispersivity_longitudinal parameter.",
thermal_dispersivity_longitudinal->name.c_str());
// Parameter for the thermal conductivity of the solid (only one scalar
// per
// element, i.e., the isotropic case is handled at the moment)
thermal_dispersivity_transversal = &ParameterLib::findParameter<double>(
*dispersion_config,
//! \ogs_file_param_special{prj__processes__process__HT__thermal_dispersivity__transversal}
"transversal", parameters, 1);
DBUG("Use '%s' as thermal_dispersivity_transversal parameter.",
thermal_dispersivity_transversal->name.c_str());
}
// Parameter for the thermal conductivity of the solid (only one scalar per
// element, i.e., the isotropic case is handled at the moment)
auto& thermal_conductivity_solid = ParameterLib::findParameter<double>(
config,
//! \ogs_file_param_special{prj__processes__process__HT__thermal_conductivity_solid}
"thermal_conductivity_solid", parameters, 1);
DBUG("Use '%s' as thermal_conductivity_solid parameter.",
thermal_conductivity_solid.name.c_str());
// Parameter for the thermal conductivity of the fluid.
auto& thermal_conductivity_fluid = ParameterLib::findParameter<double>(
config,
//! \ogs_file_param_special{prj__processes__process__HT__thermal_conductivity_fluid}
"thermal_conductivity_fluid", parameters, 1);
DBUG("Use '%s' as thermal_conductivity_fluid parameter.",
thermal_conductivity_fluid.name.c_str());
// Specific body force parameter.
Eigen::VectorXd specific_body_force;
std::vector<double> const b =
//! \ogs_file_param{prj__processes__process__HT__specific_body_force}
config.getConfigParameter<std::vector<double>>("specific_body_force");
assert(!b.empty() && b.size() < 4);
if (b.size() < mesh.getDimension())
{
OGS_FATAL(
"specific body force (gravity vector) has %d components, mesh "
"dimension is %d",
b.size(), mesh.getDimension());
}
bool const has_gravity = MathLib::toVector(b).norm() > 0;
if (has_gravity)
{
specific_body_force.resize(b.size());
std::copy_n(b.data(), b.size(), specific_body_force.data());
}
ParameterLib::ConstantParameter<double> default_solid_thermal_expansion(
"default solid thermal expansion", 0.);
ParameterLib::ConstantParameter<double> default_biot_constant(
"default_biot constant", 0.);
ParameterLib::Parameter<double>* solid_thermal_expansion =
&default_solid_thermal_expansion;
ParameterLib::Parameter<double>* biot_constant = &default_biot_constant;
auto const solid_config =
//! \ogs_file_param{prj__processes__process__HT__solid_thermal_expansion}
config.getConfigSubtreeOptional("solid_thermal_expansion");
const bool has_fluid_thermal_expansion = static_cast<bool>(solid_config);
if (solid_config)
{
solid_thermal_expansion = &ParameterLib::findParameter<double>(
//! \ogs_file_param_special{prj__processes__process__HT__solid_thermal_expansion__thermal_expansion}
*solid_config, "thermal_expansion", parameters, 1);
DBUG("Use '%s' as solid thermal expansion.",
solid_thermal_expansion->name.c_str());
biot_constant = &ParameterLib::findParameter<double>(
//! \ogs_file_param_special{prj__processes__process__HT__solid_thermal_expansion__biot_constant}
*solid_config, "biot_constant", parameters, 1);
DBUG("Use '%s' as Biot's constant.", biot_constant->name.c_str());
}
std::unique_ptr<ProcessLib::SurfaceFluxData> surfaceflux;
auto calculatesurfaceflux_config =
//! \ogs_file_param{prj__processes__process__calculatesurfaceflux}
config.getConfigSubtreeOptional("calculatesurfaceflux");
if (calculatesurfaceflux_config)
{
surfaceflux = ProcessLib::SurfaceFluxData::
createSurfaceFluxData(*calculatesurfaceflux_config, meshes,
output_directory);
}
auto media_map =
MaterialPropertyLib::createMaterialSpatialDistributionMap(media, mesh);
std::unique_ptr<HTMaterialProperties> material_properties =
std::make_unique<HTMaterialProperties>(
std::move(porous_media_properties),
density_solid,
std::move(fluid_properties),
std::move(media_map),
has_fluid_thermal_dispersivity,
*thermal_dispersivity_longitudinal,
*thermal_dispersivity_transversal,
specific_heat_capacity_solid,
thermal_conductivity_solid,
thermal_conductivity_fluid,
has_fluid_thermal_expansion,
*solid_thermal_expansion,
*biot_constant,
specific_body_force,
has_gravity);
SecondaryVariableCollection secondary_variables;
NumLib::NamedFunctionCaller named_function_caller(
{"HT_temperature_pressure"});
ProcessLib::createSecondaryVariables(config, secondary_variables,
named_function_caller);
return std::make_unique<HTProcess>(
mesh, std::move(jacobian_assembler), parameters, integration_order,
std::move(process_variables), std::move(material_properties),
std::move(secondary_variables), std::move(named_function_caller),
use_monolithic_scheme, std::move(surfaceflux),
_heat_transport_process_id, _hydraulic_process_id);
}
} // namespace HT
} // namespace ProcessLib