Newer
Older
/**
* \file Calculation of a minimum bounding sphere for a vector of points
* \author Karsten Rink
* \date 2014-07-11
* \brief Implementation of the BoundingSphere class.
*
* \copyright
* Copyright (c) 2013, OpenGeoSys Community (http://www.opengeosys.org)
* Distributed under a Modified BSD License.
* See accompanying file LICENSE.txt or
* http://www.opengeosys.org/project/license
*
*/
#include "BoundingSphere.h"
// ThirdParty/logog
#include "logog/include/logog.hpp"
#include "MathTools.h"
namespace GeoLib {
BoundingSphere::BoundingSphere()
: _center(std::numeric_limits<double>::max(), std::numeric_limits<double>::max(), std::numeric_limits<double>::max()), _radius(-1)
{
}
BoundingSphere::BoundingSphere(const BoundingSphere &sphere)
: _center(sphere.getCenter()), _radius(sphere.getRadius())
{
}
BoundingSphere::BoundingSphere(const GeoLib::Point &p)
: _center(p), _radius(std::numeric_limits<double>::epsilon())
{
}
BoundingSphere::BoundingSphere(const GeoLib::Point &p, double radius)
: _center(p), _radius(radius)
{
}
BoundingSphere::BoundingSphere(const GeoLib::Point &p, const GeoLib::Point &q)
: _center(p), _radius(std::numeric_limits<double>::epsilon())
{
const MathLib::Vector3 a(p, q);
if (a.getLength() > 0)
{
const MathLib::Vector3 o(0.5*a);
_radius = o.getLength() + std::numeric_limits<double>::epsilon();
_center = MathLib::Vector3(p) + o;
}
}
BoundingSphere::BoundingSphere(const GeoLib::Point &p, const GeoLib::Point &q, const GeoLib::Point &r)
{
const MathLib::Vector3 a(p,r);
const MathLib::Vector3 b(p,q);
const MathLib::Vector3 cross_ab(crossProduct(a,b));
if (cross_ab.getLength() > 0)
{
const double denom = 2.0 * scalarProduct(cross_ab,cross_ab);
const MathLib::Vector3 o = (scalarProduct(b,b) * crossProduct(cross_ab, a)
+ scalarProduct(a,a) * crossProduct(b, cross_ab))
* (1.0 / denom);
_radius = o.getLength() + std::numeric_limits<double>::epsilon();
_center = MathLib::Vector3(p) + o;
}
else
{
BoundingSphere two_pnts_sphere;
if (a.getLength() > b.getLength())
two_pnts_sphere = BoundingSphere(p,r);
else
two_pnts_sphere = BoundingSphere(p,q);
_radius = two_pnts_sphere.getRadius();
_center = two_pnts_sphere.getCenter();
}
}
BoundingSphere::BoundingSphere(const GeoLib::Point &p, const GeoLib::Point &q, const GeoLib::Point &r, const GeoLib::Point &s)
{
const MathLib::Vector3 a(p, q);
const MathLib::Vector3 b(p, r);
const MathLib::Vector3 c(p, s);
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
if (!GeoLib::isCoplanar(p, q, r, s))
{
// det of matrix [a^T, b^T, c^T]^T
const double denom = 2.0 * (a[0] * (b[1] * c[2] - c[1] * b[2])
- b[0] * (a[1] * c[2] - c[1] * a[2])
+ c[0] * (a[1] * b[2] - b[1] * a[2]));
const MathLib::Vector3 o = (scalarProduct(c,c) * crossProduct(a,b)
+ scalarProduct(b,b) * crossProduct(c,a)
+ scalarProduct(a,a) * crossProduct(b,c))
* (1.0 / denom);
_radius = o.getLength() + std::numeric_limits<double>::epsilon();
_center = MathLib::Vector3(p) + o;
}
else
{
BoundingSphere pqr(p, q , r);
BoundingSphere pqs(p, q , s);
BoundingSphere prs(p, r , s);
BoundingSphere qrs(q, r , s);
_radius = pqr.getRadius();
_center = pqr.getCenter();
if (_radius < pqs.getRadius())
{
_radius = pqs.getRadius();
_center = pqs.getCenter();
}
if (_radius < prs.getRadius())
{
_radius = prs.getRadius();
_center = prs.getCenter();
}
if (_radius < qrs.getRadius())
{
_radius = qrs.getRadius();
_center = qrs.getCenter();
}
}
}
BoundingSphere::BoundingSphere(const std::vector<GeoLib::Point*> &points)
: _center(0,0,0), _radius(-1)
{
const std::size_t n_points (points.size());
GeoLib::Point **sphere_points = new GeoLib::Point*[n_points];
for(unsigned int i = 0; i < n_points; i++)
sphere_points[i] = points[i];
const BoundingSphere bounding_sphere = recurseCalculation(points, 0, points.size(), 0);
this->_center = bounding_sphere.getCenter();
this->_radius = bounding_sphere.getRadius();
}
BoundingSphere BoundingSphere::recurseCalculation(std::vector<GeoLib::Point*> sphere_points, std::size_t current_index, std::size_t n_points, std::size_t n_boundary_points)
{
case 0:
sphere = BoundingSphere();
break;
case 1:
sphere = BoundingSphere(*sphere_points[current_index-1]);
sphere = BoundingSphere(*sphere_points[current_index-1], *sphere_points[current_index-2]);
sphere = BoundingSphere(*sphere_points[current_index-1], *sphere_points[current_index-2], *sphere_points[current_index-3]);
sphere = BoundingSphere(*sphere_points[current_index-1], *sphere_points[current_index-2], *sphere_points[current_index-3], *sphere_points[current_index-4]);
for(std::size_t i=current_index; i<n_points; ++i)
// current point is located outside of sphere
if(sphere.sqrPointDist(*sphere_points[i]) > 0)
{
GeoLib::Point* tmp = sphere_points[i];
std::copy(sphere_points.begin(), sphere_points.begin() + i, sphere_points.begin() + 1);
sphere_points[0] = tmp;
sphere = recurseCalculation(sphere_points, current_index+1, i, n_boundary_points+1);
}
}
return sphere;
}
double BoundingSphere::sqrPointDist(const GeoLib::Point pnt) const
{
return MathLib::sqrDist(_center.getCoords(), pnt.getCoords())-(_radius*_radius);
}
std::vector<GeoLib::Point*>* BoundingSphere::getRandomSpherePoints(std::size_t n_points) const
{
std::vector<GeoLib::Point*> *pnts = new std::vector<GeoLib::Point*>;
pnts->reserve(n_points);
srand ( static_cast<unsigned>(time(NULL)) );
for (std::size_t k(0); k<n_points; ++k)
{
MathLib::Vector3 vec (0,0,0);
double sum (0);
for (unsigned i=0; i<3; ++i)
{
vec[i] = (double)rand()-(RAND_MAX/2.0);
sum+=(vec[i]*vec[i]);
}
double fac (this->_radius/sqrt(sum));
pnts->push_back(new GeoLib::Point(_center[0]+vec[0]*fac, _center[1]+vec[1]*fac, _center[2]+vec[2]*fac));
}
return pnts;
}
}