Skip to content
Snippets Groups Projects
Commit 597f731e authored by wenqing's avatar wenqing
Browse files

[web/BGRa] Corrected two typos and made a consistency of one symbol within the context

parent ac7b4512
No related branches found
No related tags found
No related merge requests found
......@@ -38,12 +38,12 @@ The creep strain rate is then expressed as
$$\begin{gathered}
\dot { \mathbf \epsilon}^c ({ \sigma})= {\dfrac{\partial g^c}{\partial {\bar\sigma}}}
{\dfrac{\partial { \bar\sigma}}{\partial { \mathbf \sigma}}}
=\sqrt{{\frac{2}{3}}}{\dfrac{\partial g^c}{\partial {\bar \sigma}}}\dfrac{{\mathbf s}}{{\left\Vert{\mathbf s}\right\Vert}}
=\sqrt{{\frac{3}{2}}}{\dfrac{\partial g^c}{\partial {\bar \sigma}}}\dfrac{{\mathbf s}}{{\left\Vert{\mathbf s}\right\Vert}}
\end{gathered}$$
The above creep strain rate expression
must be valid for problems independent from the Euclidean dimension. Applying
the creep rate equation to a uniaxial stress state ${\mathbf \sigma} = \mathrm{diag}[\sigma_1, 0, 0]$,
which gives ${\mathbf s} = \mathrm{diag}[\frac{2}{3}\sigma_1, -\frac{2}{3}\sigma_1, -\frac{2}{3}\sigma_1]$,
which gives ${\mathbf s} = \mathrm{diag}[\frac{2}{3}\sigma_1, -\frac{1}{3}\sigma_1, -\frac{1}{3}\sigma_1]$,
we have
$$\begin{gathered}
\dot { \epsilon_1}^c = {\dfrac{\partial g^c}{\partial { \bar\sigma}}}=Ae^{-Q/R_uT}\left(\dfrac{{ \sigma_1}}{{ \sigma}_f}\right)^m
......@@ -55,7 +55,7 @@ $$\begin{gathered}
Therefore, the creep strain rate for multi-dimensional problems can be
derived as $$\begin{gathered}
\dot { \mathbf \epsilon}^c ({ \sigma})={\color{red} {\sqrt{\frac{3}{2}}}}Ae^{-Q/R_uT}\left(\dfrac{{ \sigma}}{{ \sigma}_f}\right)^m\dfrac{{\mathbf s}}{{\left\Vert{\mathbf s}\right\Vert}}
\dot { \mathbf \epsilon}^c ({ \sigma})={\color{red} {\sqrt{\frac{3}{2}}}}Ae^{-Q/R_uT}\left(\dfrac{{\bar \sigma}}{{ \sigma}_f}\right)^m\dfrac{{\mathbf s}}{{\left\Vert{\mathbf s}\right\Vert}}
\end{gathered}$$
Stress integration
......@@ -78,8 +78,8 @@ $$\begin{gathered}
(\dot { \mathbf \epsilon}- \dot { \mathbf \epsilon}^T- \dot { \mathbf \epsilon}^c)
\end{gathered}$$
where
$\mathbf{C} = \lambda \mathcal{J} + 2G \mathbf I \otimes \mathbf I$
with $\mathcal{J}$ the forth order identity, $\mathbf I$ the second order identity,
$\mathbf{C} = \lambda \mathcal{I} + 2G \mathbf I \otimes \mathbf I$
with $\mathcal{I}$ the fourth order identity, $\mathbf I$ the second order identity,
$\lambda$ the Lamé constant, $G$ the shear modulus, and $\otimes$ the tensor
product notation.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment