Skip to content
Snippets Groups Projects
Commit d3e8bdcd authored by wenqing's avatar wenqing
Browse files

[web/BGRa] Improved the documentation

parent b5688ae1
No related branches found
No related tags found
No related merge requests found
...@@ -15,9 +15,9 @@ author = "Wenqing Wang" ...@@ -15,9 +15,9 @@ author = "Wenqing Wang"
The BGRa stationary creep model defines the uniaxial creep strain The BGRa stationary creep model defines the uniaxial creep strain
increment as increment as
$$\Delta{ \epsilon}^c=Ae^{-Q/R_uT}\left(\dfrac{{ \sigma}}{{ \sigma}_f}\right)^m \Delta t $$\Delta{ \epsilon}^c=Ae^{-Q/R_uT}\left(\dfrac{{ \sigma_1}}{{ \sigma}_f}\right)^m \Delta t
$$ $$
where $A$, $m$ and $Q$ are parameters determined where $\sigma_1$ is the stress, $A$, $m$ and $Q$ are parameters determined
by experiments, $Q$ is called activation energy, by experiments, $Q$ is called activation energy,
$R_u=8.314472 \mbox{J/(Kmol)}$ is the universal gas constant, and $R_u=8.314472 \mbox{J/(Kmol)}$ is the universal gas constant, and
${ \sigma}_f$ is a stress scaling factor. ${ \sigma}_f$ is a stress scaling factor.
...@@ -27,24 +27,30 @@ Creep potential and creep strain ...@@ -27,24 +27,30 @@ Creep potential and creep strain
Assume there is a creep potential $g^c$ and the creep induced strain Assume there is a creep potential $g^c$ and the creep induced strain
rate is given by the flow rule rate is given by the flow rule
$$\dot { \mathbf \epsilon}^c ({ \sigma})= \frac{2}{3}{\dfrac{\partial g^c}{\partial { \mathbf \sigma}}} $$\dot { \mathbf \epsilon}^c ({ \mathbf \sigma})= {\dfrac{\partial g^c}{\partial { \mathbf \sigma}}}
$$ where ${ \sigma}$ is the equivalence stress $$ where ${ \mathbf\sigma}$ is the stress tensor.
defined by To establish equivalence between the three-dimensional and the uniaxial formulation given above,
${ \sigma}={\sqrt{{\frac{3}{2}}}}{\left\Vert{\mathbf s}\right\Vert}$ we use the effective stress defined by
with ${\mathbf s}= { \mathbf \sigma}-\frac{1}{3}{ \sigma}{\mathbf I}$, ${ \bar\sigma}={\sqrt{{\frac{3}{2}}}}{\left\Vert{\mathbf s}\right\Vert}$
the deviatoric stress. The creep strain rate is then expressed as with ${\mathbf s}= { \mathbf \sigma}-\frac{1}{3}{ \mathrm{tr}(\mathbf\sigma}){\mathbf I}$,
the deviatoric stress.
The creep strain rate is then expressed as
$$\begin{gathered} $$\begin{gathered}
\dot { \mathbf \epsilon}^c ({ \sigma})= \frac{2}{3} {\dfrac{\partial g^c}{\partial { \sigma}}}{\dfrac{\partial { \sigma}}{\partial { \mathbf \sigma}}}=\sqrt{{\frac{2}{3}}}{\dfrac{\partial g^c}{\partial { \sigma}}}\dfrac{{\mathbf s}}{{\left\Vert{\mathbf s}\right\Vert}}={\dfrac{\partial g^c}{\partial { \sigma}}}\dfrac{{\mathbf s}}{\sigma} \dot { \mathbf \epsilon}^c ({ \sigma})= {\dfrac{\partial g^c}{\partial {\bar\sigma}}}
{\dfrac{\partial { \bar\sigma}}{\partial { \mathbf \sigma}}}
=\sqrt{{\frac{2}{3}}}{\dfrac{\partial g^c}{\partial {\bar \sigma}}}\dfrac{{\mathbf s}}{{\left\Vert{\mathbf s}\right\Vert}}
\end{gathered}$$ \end{gathered}$$
The above creep strain rate expression The above creep strain rate expression
must be valid for the problems with different dimension. Applying must be valid for problems independent from the Euclidean dimension. Applying
the creep rate equation to one dimensional leads to the creep rate equation to a uniaxial stress state ${\mathbf \sigma} = \mathrm{diag}[\sigma_1, 0, 0]$,
which gives ${\mathbf s} = \mathrm{diag}[\frac{2}{3}\sigma_1, -\frac{2}{3}\sigma_1, -\frac{2}{3}\sigma_1]$,
we have
$$\begin{gathered} $$\begin{gathered}
\dot { \epsilon}^c = {\dfrac{\partial g^c}{\partial { \sigma}}}{\color{red} {\frac{2}{3}}}=Ae^{-Q/R_uT}\left(\dfrac{{ \sigma}}{{ \sigma}_f}\right)^m \dot { \epsilon_1}^c = {\dfrac{\partial g^c}{\partial { \bar\sigma}}}=Ae^{-Q/R_uT}\left(\dfrac{{ \sigma_1}}{{ \sigma}_f}\right)^m
\end{gathered}$$ which says \end{gathered}$$
which says
$$\begin{gathered} $$\begin{gathered}
{\dfrac{\partial g^c}{\partial { \sigma}}}={\color{red}{\frac{3}{2}}}Ae^{-Q/R_u T}\left(\dfrac{{ \sigma}}{{ \sigma}_f}\right)^m {\dfrac{\partial g^c}{\partial { \bar\sigma}}}=Ae^{-Q/R_u T}\left(\dfrac{{ \sigma_1}}{{ \sigma}_f}\right)^m
\end{gathered}$$ \end{gathered}$$
Therefore, the creep strain rate for multi-dimensional problems can be Therefore, the creep strain rate for multi-dimensional problems can be
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment