Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
O
ogs
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
wenqing
ogs
Commits
d3e8bdcd
Commit
d3e8bdcd
authored
6 years ago
by
wenqing
Browse files
Options
Downloads
Patches
Plain Diff
[web/BGRa] Improved the documentation
parent
b5688ae1
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
web/content/docs/benchmarks/creepbgra/CreepBRGa.md
+21
-15
21 additions, 15 deletions
web/content/docs/benchmarks/creepbgra/CreepBRGa.md
with
21 additions
and
15 deletions
web/content/docs/benchmarks/creepbgra/CreepBRGa.md
+
21
−
15
View file @
d3e8bdcd
...
@@ -15,9 +15,9 @@ author = "Wenqing Wang"
...
@@ -15,9 +15,9 @@ author = "Wenqing Wang"
The BGRa stationary creep model defines the uniaxial creep strain
The BGRa stationary creep model defines the uniaxial creep strain
increment as
increment as
$$
\D
elta{
\e
psilon}^c=Ae^{-Q/R_uT}
\l
eft(
\d
frac{{
\s
igma}}{{
\s
igma}_f}
\r
ight)^m
\D
elta t
$$
\D
elta{
\e
psilon}^c=Ae^{-Q/R_uT}
\l
eft(
\d
frac{{
\s
igma
_1
}}{{
\s
igma}_f}
\r
ight)^m
\D
elta t
$$
$$
where $A$, $m$ and $Q$ are parameters determined
where
$
\s
igma_1$ is the stress,
$A$, $m$ and $Q$ are parameters determined
by experiments, $Q$ is called activation energy,
by experiments, $Q$ is called activation energy,
$R_u=8.314472
\m
box{J/(Kmol)}$ is the universal gas constant, and
$R_u=8.314472
\m
box{J/(Kmol)}$ is the universal gas constant, and
${
\s
igma}_f$ is a stress scaling factor.
${
\s
igma}_f$ is a stress scaling factor.
...
@@ -27,24 +27,30 @@ Creep potential and creep strain
...
@@ -27,24 +27,30 @@ Creep potential and creep strain
Assume there is a creep potential $g^c$ and the creep induced strain
Assume there is a creep potential $g^c$ and the creep induced strain
rate is given by the flow rule
rate is given by the flow rule
$$
\d
ot {
\m
athbf
\e
psilon}^c ({
\s
igma})=
\f
rac{2}{3}{
\d
frac{
\p
artial g^c}{
\p
artial {
\m
athbf
\s
igma}}}
$$
\d
ot {
\m
athbf
\e
psilon}^c ({
\m
athbf
\s
igma})= {
\d
frac{
\p
artial g^c}{
\p
artial {
\m
athbf
\s
igma}}}
$$ where ${
\s
igma}$ is the equivalence stress
$$ where ${
\m
athbf
\s
igma}$ is the stress tensor.
defined by
To establish equivalence between the three-dimensional and the uniaxial formulation given above,
${
\s
igma}={
\s
qrt{{
\f
rac{3}{2}}}}{
\l
eft
\V
ert{
\m
athbf s}
\r
ight
\V
ert}$
we use the effective stress defined by
with ${
\m
athbf s}= {
\m
athbf
\s
igma}-
\f
rac{1}{3}{
\s
igma}{
\m
athbf I}$,
${
\b
ar
\s
igma}={
\s
qrt{{
\f
rac{3}{2}}}}{
\l
eft
\V
ert{
\m
athbf s}
\r
ight
\V
ert}$
the deviatoric stress. The creep strain rate is then expressed as
with ${
\m
athbf s}= {
\m
athbf
\s
igma}-
\f
rac{1}{3}{
\m
athrm{tr}(
\m
athbf
\s
igma}){
\m
athbf I}$,
the deviatoric stress.
The creep strain rate is then expressed as
$$
\b
egin{gathered}
$$
\b
egin{gathered}
\d
ot {
\m
athbf
\e
psilon}^c ({
\s
igma})=
\f
rac{2}{3} {
\d
frac{
\p
artial g^c}{
\p
artial {
\s
igma}}}{
\d
frac{
\p
artial {
\s
igma}}{
\p
artial {
\m
athbf
\s
igma}}}=
\s
qrt{{
\f
rac{2}{3}}}{
\d
frac{
\p
artial g^c}{
\p
artial {
\s
igma}}}
\d
frac{{
\m
athbf s}}{{
\l
eft
\V
ert{
\m
athbf s}
\r
ight
\V
ert}}={
\d
frac{
\p
artial g^c}{
\p
artial {
\s
igma}}}
\d
frac{{
\m
athbf s}}{
\s
igma}
\d
ot {
\m
athbf
\e
psilon}^c ({
\s
igma})= {
\d
frac{
\p
artial g^c}{
\p
artial {
\b
ar
\s
igma}}}
{
\d
frac{
\p
artial {
\b
ar
\s
igma}}{
\p
artial {
\m
athbf
\s
igma}}}
=
\s
qrt{{
\f
rac{2}{3}}}{
\d
frac{
\p
artial g^c}{
\p
artial {
\b
ar
\s
igma}}}
\d
frac{{
\m
athbf s}}{{
\l
eft
\V
ert{
\m
athbf s}
\r
ight
\V
ert}}
\e
nd{gathered}$$
\e
nd{gathered}$$
The above creep strain rate expression
The above creep strain rate expression
must be valid for the problems with different dimension. Applying
must be valid for problems independent from the Euclidean dimension. Applying
the creep rate equation to one dimensional leads to
the creep rate equation to a uniaxial stress state ${
\m
athbf
\s
igma} =
\m
athrm{diag}[
\s
igma_1, 0, 0]$,
which gives ${
\m
athbf s} =
\m
athrm{diag}[
\f
rac{2}{3}
\s
igma_1, -
\f
rac{2}{3}
\s
igma_1, -
\f
rac{2}{3}
\s
igma_1]$,
we have
$$
\b
egin{gathered}
$$
\b
egin{gathered}
\d
ot {
\e
psilon}^c = {
\d
frac{
\p
artial g^c}{
\p
artial {
\s
igma}}}
{
\c
olor{red} {
\f
rac{2}{3}}}
=Ae^{-Q/R_uT}
\l
eft(
\d
frac{{
\s
igma}}{{
\s
igma}_f}
\r
ight)^m
\d
ot {
\e
psilon
_1
}^c = {
\d
frac{
\p
artial g^c}{
\p
artial {
\b
ar
\s
igma}}}=Ae^{-Q/R_uT}
\l
eft(
\d
frac{{
\s
igma
_1
}}{{
\s
igma}_f}
\r
ight)^m
\e
nd{gathered}$$
which says
\e
nd{gathered}$$
which says
$$
\b
egin{gathered}
$$
\b
egin{gathered}
{
\d
frac{
\p
artial g^c}{
\p
artial {
\s
igma}}}=
{
\c
olor{red}{
\f
rac{3}{2}}}
Ae^{-Q/R_u T}
\l
eft(
\d
frac{{
\s
igma}}{{
\s
igma}_f}
\r
ight)^m
{
\d
frac{
\p
artial g^c}{
\p
artial {
\b
ar
\s
igma}}}=Ae^{-Q/R_u T}
\l
eft(
\d
frac{{
\s
igma
_1
}}{{
\s
igma}_f}
\r
ight)^m
\e
nd{gathered}$$
\e
nd{gathered}$$
Therefore, the creep strain rate for multi-dimensional problems can be
Therefore, the creep strain rate for multi-dimensional problems can be
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment