Forked from
ogs / ogs
23844 commits behind the upstream repository.
-
Karsten Rink authoredKarsten Rink authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
MathTools.h 4.41 KiB
/**
* \file
* \author Thomas Fischer
* \date 2010-01-13
* \brief Definition of math helper functions.
*
* \copyright
* Copyright (c) 2013, OpenGeoSys Community (http://www.opengeosys.org)
* Distributed under a Modified BSD License.
* See accompanying file LICENSE.txt or
* http://www.opengeosys.org/project/license
*
*/
#ifndef MATHTOOLS_H_
#define MATHTOOLS_H_
#include <cmath>
#include <limits>
#include <vector>
#ifdef _OPENMP
#include <omp.h>
#endif
#include "TemplatePoint.h"
namespace MathLib
{
/**
* standard inner product in R^N
* \param v0 array of type T representing the vector
* \param v1 array of type T representing the vector
* */
template<typename T, int N> inline
T scalarProduct(T const * const v0, T const * const v1)
{
T res (v0[0] * v1[0]);
#ifdef _OPENMP
OPENMP_LOOP_TYPE k;
#pragma omp parallel for reduction (+:res)
for (k = 1; k<N; k++) {
res += v0[k] * v1[k];
}
#else
for (std::size_t k(1); k < N; k++)
res += v0[k] * v1[k];
#endif
return res;
}
template <> inline
double scalarProduct<double,3>(double const * const v0, double const * const v1)
{
double res (v0[0] * v1[0]);
for (std::size_t k(1); k < 3; k++)
res += v0[k] * v1[k];
return res;
}
template<typename T> inline
T scalarProduct(T const * const v0, T const * const v1, unsigned n)
{
T res (v0[0] * v1[0]);
#ifdef _OPENMP
OPENMP_LOOP_TYPE k;
#pragma omp parallel for reduction (+:res)
#ifdef WIN32
#pragma warning ( push )
#pragma warning ( disable: 4018 )
#endif
for (k = 1; k<n; k++) {
res += v0[k] * v1[k];
}
#ifdef WIN32
#pragma warning ( pop )
#endif
#else
for (std::size_t k(1); k < n; k++)
res += v0[k] * v1[k];
#endif
return res;
}
/**
* computes the cross (or vector) product of the 3d vectors u and v
* the result is given in the vector r
*/
void crossProd (const double u[3], const double v[3], double r[3]);
/**
* calcProjPntToLineAndDists computes the orthogonal projection
* of a point p to the line described by the points a and b,
* \f$g(\lambda) = a + \lambda (b - a)\f$,
* the distance between p and the projected point
* and the distances between the projected point and the end
* points a, b of the line
* \param p the (mesh) point
* \param a first point of line
* \param b second point of line
* \param lambda the projected point described by the line equation above
* \param d0 distance to the line point a
* \returns the distance between p and the orthogonal projection of p
*/
double calcProjPntToLineAndDists(const double p[3], const double a[3],
const double b[3], double &lambda, double &d0);
template <typename POINT_T>
typename POINT_T::FP_T sqrDist(POINT_T const& p0, POINT_T const& p1)
{
typename POINT_T::FP_T const v[3] = {p1[0]-p0[0], p1[1]-p0[1], p1[2]-p0[2]};
return MathLib::scalarProduct<typename POINT_T::FP_T,3>(v,v);
}
template <typename T, std::size_t DIM>
bool operator==(TemplatePoint<T,DIM> const& a, TemplatePoint<T,DIM> const& b)
{
T const sqr_dist(sqrDist(a,b));
return (sqr_dist < pow(std::numeric_limits<T>::epsilon(),2));
}
/** squared dist between double arrays p0 and p1 (size of arrays is 3) */
double sqrDist(const double* p0, const double* p1);
/** Distance between points p0 and p1 in the maximum norm. */
template <typename T>
T maxNormDist(const MathLib::TemplatePoint<T>* p0, const MathLib::TemplatePoint<T>* p1)
{
const T x = fabs((*p1)[0] - (*p0)[0]);
const T y = fabs((*p1)[1] - (*p0)[1]);
const T z = fabs((*p1)[2] - (*p0)[2]);
return std::max(x, std::max(y, z));
}
/** linear normalisation of val from [min, max] into [0,1] */
float normalize(float min, float max, float val);
/**
* Let \f$p_0, p_1, p_2 \in R^3\f$. The function getAngle
* computes the angle between the edges \f$(p_0,p_1)\f$ and \f$(p_1,p_2)\f$
* @param p0 start point of edge 0
* @param p1 end point of edge 0 and start point of edge 1
* @param p2 end point of edge 1
* @return the angle between the edges
*/
double getAngle (const double p0[3], const double p1[3], const double p2[3]);
/**
* simple power function that takes as a second argument an integer instead of a float
* @param base basis of the expression
* @param exp exponent of the expression
* @return base^exp
*/
template <typename T> inline
T fastpow (T base, std::size_t exp)
{
T result (base);
if (exp == 0)
result = static_cast<T>(1);
for (std::size_t k(1); k < exp; k++)
result *= base;
return result;
}
} // namespace
#endif /* MATHTOOLS_H_ */