Forked from
ogs / ogs
21542 commits behind the upstream repository.
-
Dmitri Naumov authoredDmitri Naumov authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
TestFunctionInterpolation.cpp 2.79 KiB
/**
* \copyright
* Copyright (c) 2012-2015, OpenGeoSys Community (http://www.opengeosys.org)
* Distributed under a Modified BSD License.
* See accompanying file LICENSE.txt or
* http://www.opengeosys.org/LICENSE.txt
*/
#include <gtest/gtest.h>
#include <array>
#include "NumLib/Function/Interpolation.h"
#include "NumLib/Fem/FiniteElement/TemplateIsoparametric.h"
#include "NumLib/Fem/ShapeFunction/ShapeLine2.h"
#include "NumLib/Fem/ShapeMatrixPolicy.h"
#include "MeshLib/Elements/Element.h"
#include "NumLib/Fem/Integration/GaussIntegrationPolicy.h"
TEST(NumLibFunctionInterpolationTest, TwoVariablesTwoNodes)
{
double variable1 = 0.0;
double variable2 = 0.0;
std::array<double*, 2> interpolated_values = {{&variable1, &variable2}};
const std::array<double, 4> nodal_values = {{
0.0, 1.0, // for variable1
-1.0, 1.0 // for variable2
}};
const std::array<double, 2> shape_matrix = {{0.25, 0.75}};
NumLib::shapeFunctionInterpolate(nodal_values, shape_matrix,
interpolated_values);
ASSERT_EQ(0.75, variable1);
ASSERT_EQ(0.5, variable2);
}
TEST(NumLibFunctionInterpolationTest, Linear1DElement)
{
// typedefs
using ShapeFunction = NumLib::ShapeLine2;
using ShapeMatricesType = ShapeMatrixPolicyType<ShapeFunction, 1u>;
using FemType = NumLib::TemplateIsoparametric<ShapeFunction, ShapeMatricesType>;
using IntegrationMethod = NumLib::GaussIntegrationPolicy<
ShapeFunction::MeshElement>::IntegrationMethod;
// set up mesh element
auto pt_a = MeshLib::Node({{0.0, 0.0, 0.0}}, 0);
auto pt_b = MeshLib::Node({{1.0, 0.0, 0.0}}, 0);
auto const element =
MeshLib::Line(std::array<MeshLib::Node*, 2>{{&pt_a, &pt_b}});
// set up shape function
FemType finite_element(*static_cast<const ShapeFunction::MeshElement*>(&element));
const unsigned integration_order = 2;
IntegrationMethod integration_method(integration_order);
ShapeMatricesType::ShapeMatrices shape_matrix;
finite_element.computeShapeFunctions(
integration_method.getWeightedPoint(0).getCoords(),
shape_matrix);
ASSERT_EQ(2, shape_matrix.N.size());
// actual test
double variable1 = 0.0;
double variable2 = 0.0;
std::array<double*, 2> interpolated_values = {{&variable1, &variable2}};
const std::array<double, 4> nodal_values = {{
0.0, 1.0, // for variable1
-1.0, 1.0 // for variable2
}};
NumLib::shapeFunctionInterpolate(nodal_values, shape_matrix.N,
interpolated_values);
const double n0 = shape_matrix.N[0];
const double n1 = shape_matrix.N[1];
ASSERT_EQ( 0.0 * n0 + 1.0 * n1, variable1);
ASSERT_EQ(-1.0 * n0 + 1.0 * n1, variable2);
}