Forked from
ogs / ogs
13257 commits behind the upstream repository.
-
Dmitri Naumov authored
find *Lib -type f | xargs sed -i 'N;s%\(^\/\*\*\)\n \*$%\1%'
Dmitri Naumov authoredfind *Lib -type f | xargs sed -i 'N;s%\(^\/\*\*\)\n \*$%\1%'
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
GeometricBasics.cpp 8.54 KiB
/**
* \file
* \copyright
* Copyright (c) 2012-2019, OpenGeoSys Community (http://www.opengeosys.org)
* Distributed under a Modified BSD License.
* See accompanying file LICENSE.txt or
* http://www.opengeosys.org/project/license
*/
#include <logog/include/logog.hpp>
#include <Eigen/Dense>
#include "Point3d.h"
#include "Vector3.h"
#include "GeometricBasics.h"
namespace MathLib
{
double orientation3d(MathLib::Point3d const& p,
MathLib::Point3d const& a,
MathLib::Point3d const& b,
MathLib::Point3d const& c)
{
MathLib::Vector3 const ap (a, p);
MathLib::Vector3 const bp (b, p);
MathLib::Vector3 const cp (c, p);
return MathLib::scalarTriple(bp,cp,ap);
}
double calcTetrahedronVolume(MathLib::Point3d const& a,
MathLib::Point3d const& b,
MathLib::Point3d const& c,
MathLib::Point3d const& d)
{
const MathLib::Vector3 ab(a, b);
const MathLib::Vector3 ac(a, c);
const MathLib::Vector3 ad(a, d);
return std::abs(MathLib::scalarTriple(ac, ad, ab)) / 6.0;
}
double calcTriangleArea(MathLib::Point3d const& a, MathLib::Point3d const& b,
MathLib::Point3d const& c)
{
MathLib::Vector3 const u(a, c);
MathLib::Vector3 const v(a, b);
MathLib::Vector3 const w(MathLib::crossProduct(u, v));
return 0.5 * w.getLength();
}
bool isPointInTetrahedron(MathLib::Point3d const& p, MathLib::Point3d const& a,
MathLib::Point3d const& b, MathLib::Point3d const& c,
MathLib::Point3d const& d, double eps)
{
double const d0 (MathLib::orientation3d(d,a,b,c));
// if tetrahedron is not coplanar
if (std::abs(d0) > std::numeric_limits<double>::epsilon())
{
bool const d0_sign (d0>0);
// if p is on the same side of bcd as a
double const d1 (MathLib::orientation3d(d, p, b, c));
if (!(d0_sign == (d1 >= 0) || std::abs(d1) < eps))
{
return false;
}
// if p is on the same side of acd as b
double const d2 (MathLib::orientation3d(d, a, p, c));
if (!(d0_sign == (d2 >= 0) || std::abs(d2) < eps))
{
return false;
}
// if p is on the same side of abd as c
double const d3 (MathLib::orientation3d(d, a, b, p));
if (!(d0_sign == (d3 >= 0) || std::abs(d3) < eps))
{
return false;
}
// if p is on the same side of abc as d
double const d4 (MathLib::orientation3d(p, a, b, c));
return d0_sign == (d4 >= 0) || std::abs(d4) < eps;
}
return false;
}
bool isPointInTriangle(MathLib::Point3d const& p,
MathLib::Point3d const& a,
MathLib::Point3d const& b,
MathLib::Point3d const& c,
double eps_pnt_out_of_plane,
double eps_pnt_out_of_tri,
MathLib::TriangleTest algorithm)
{
switch (algorithm)
{
case MathLib::GAUSS:
return gaussPointInTriangle(p, a, b, c, eps_pnt_out_of_plane,
eps_pnt_out_of_tri);
case MathLib::BARYCENTRIC:
return barycentricPointInTriangle(p, a, b, c, eps_pnt_out_of_plane,
eps_pnt_out_of_tri);
default:
ERR("Selected algorithm for point in triangle testing not found, "
"falling back on default.");
}
return gaussPointInTriangle(p, a, b, c, eps_pnt_out_of_plane,
eps_pnt_out_of_tri);
}
bool gaussPointInTriangle(MathLib::Point3d const& q,
MathLib::Point3d const& a,
MathLib::Point3d const& b,
MathLib::Point3d const& c,
double eps_pnt_out_of_plane,
double eps_pnt_out_of_tri)
{
MathLib::Vector3 const v(a, b);
MathLib::Vector3 const w(a, c);
Eigen::Matrix2d mat;
mat(0, 0) = v.getSqrLength();
mat(0, 1) = v[0] * w[0] + v[1] * w[1] + v[2] * w[2];
mat(1, 0) = mat(0, 1);
mat(1, 1) = w.getSqrLength();
Eigen::Vector2d y;
y << v[0] * (q[0] - a[0]) + v[1] * (q[1] - a[1]) + v[2] * (q[2] - a[2]),
w[0] * (q[0] - a[0]) + w[1] * (q[1] - a[1]) + w[2] * (q[2] - a[2]);
y = mat.partialPivLu().solve(y);
const double lower(eps_pnt_out_of_tri);
const double upper(1 + lower);
if (-lower <= y[0] && y[0] <= upper && -lower <= y[1] && y[1] <= upper &&
y[0] + y[1] <= upper)
{
MathLib::Point3d const q_projected(std::array<double, 3>{
{a[0] + y[0] * v[0] + y[1] * w[0], a[1] + y[0] * v[1] + y[1] * w[1],
a[2] + y[0] * v[2] + y[1] * w[2]}});
if (MathLib::sqrDist(q, q_projected) <= eps_pnt_out_of_plane)
{
return true;
}
}
return false;
}
bool barycentricPointInTriangle(MathLib::Point3d const& p,
MathLib::Point3d const& a,
MathLib::Point3d const& b,
MathLib::Point3d const& c,
double eps_pnt_out_of_plane,
double eps_pnt_out_of_tri)
{
if (std::abs(MathLib::orientation3d(p, a, b, c)) > eps_pnt_out_of_plane)
{
return false;
}
MathLib::Vector3 const pa(p, a);
MathLib::Vector3 const pb(p, b);
MathLib::Vector3 const pc(p, c);
double const area_x_2(calcTriangleArea(a, b, c) * 2);
double const alpha((MathLib::crossProduct(pb, pc).getLength()) / area_x_2);
if (alpha < -eps_pnt_out_of_tri || alpha > 1 + eps_pnt_out_of_tri)
{
return false;
}
double const beta((MathLib::crossProduct(pc, pa).getLength()) / area_x_2);
if (beta < -eps_pnt_out_of_tri || beta > 1 + eps_pnt_out_of_tri)
{
return false;
}
double const gamma(1 - alpha - beta);
return !(gamma < -eps_pnt_out_of_tri || gamma > 1 + eps_pnt_out_of_tri);
}
bool isPointInTriangleXY(MathLib::Point3d const& p,
MathLib::Point3d const& a,
MathLib::Point3d const& b,
MathLib::Point3d const& c)
{
// criterion: p-a = u0 * (b-a) + u1 * (c-a); 0 <= u0, u1 <= 1, u0+u1 <= 1
Eigen::Matrix2d mat;
mat(0, 0) = b[0] - a[0];
mat(0, 1) = c[0] - a[0];
mat(1, 0) = b[1] - a[1];
mat(1, 1) = c[1] - a[1];
Eigen::Vector2d y;
y << p[0] - a[0], p[1] - a[1];
y = mat.partialPivLu().solve(y);
// check if u0 and u1 fulfills the condition
return 0 <= y[0] && y[0] <= 1 && 0 <= y[1] && y[1] <= 1 && y[0] + y[1] <= 1;
}
bool dividedByPlane(const MathLib::Point3d& a, const MathLib::Point3d& b,
const MathLib::Point3d& c, const MathLib::Point3d& d)
{
for (unsigned x = 0; x < 3; ++x)
{
const unsigned y = (x + 1) % 3;
const double abc =
(b[x] - a[x]) * (c[y] - a[y]) - (b[y] - a[y]) * (c[x] - a[x]);
const double abd =
(b[x] - a[x]) * (d[y] - a[y]) - (b[y] - a[y]) * (d[x] - a[x]);
if ((abc > 0 && abd < 0) || (abc < 0 && abd > 0))
{
return true;
}
}
return false;
}
bool isCoplanar(const MathLib::Point3d& a, const MathLib::Point3d& b,
const MathLib::Point3d& c, const MathLib::Point3d& d)
{
const MathLib::Vector3 ab(a, b);
const MathLib::Vector3 ac(a, c);
const MathLib::Vector3 ad(a, d);
if (ab.getSqrLength() < pow(std::numeric_limits<double>::epsilon(), 2) ||
ac.getSqrLength() < pow(std::numeric_limits<double>::epsilon(), 2) ||
ad.getSqrLength() < pow(std::numeric_limits<double>::epsilon(), 2))
{
return true;
}
// In exact arithmetic <ac*ad^T, ab> should be zero
// if all four points are coplanar.
const double sqr_scalar_triple(
pow(MathLib::scalarProduct(MathLib::crossProduct(ac, ad), ab), 2));
// Due to evaluating the above numerically some cancellation or rounding
// can occur. For this reason a normalisation factor is introduced.
const double normalisation_factor =
(ab.getSqrLength() * ac.getSqrLength() * ad.getSqrLength());
// tolerance 1e-11 is choosen such that
// a = (0,0,0), b=(1,0,0), c=(0,1,0) and d=(1,1,1e-6) are considered as
// coplanar
// a = (0,0,0), b=(1,0,0), c=(0,1,0) and d=(1,1,1e-5) are considered as not
// coplanar
return (sqr_scalar_triple / normalisation_factor < 1e-11);
}
} // end namespace MathLib