Newer
Older
+++
date = "2018-07-19T15:15:45+01:00"
title = "BGRa creep model"
weight = 171
project = "ThermoMechanics/CreepBGRa/SimpleAxisymmetricCreep/SimpleAxisymmetricCreepWithAnalyticSolution.prj"
author = "Wenqing Wang"
[menu]
[menu.benchmarks]
parent = "thermo-mechanics"
+++
{{< data-link >}}
The BGRa stationary creep model defines the uniaxial creep strain
increment as
$$\Delta{ \epsilon}^c=Ae^{-Q/R_uT}\left(\dfrac{{ \sigma_1}}{{ \sigma}_f}\right)^m \Delta t
where $\sigma_1$ is the stress, $A$, $m$ and $Q$ are parameters determined
by experiments, $Q$ is called activation energy,
$R_u=8.314472 \mbox{J/(Kmol)}$ is the universal gas constant, and
${ \sigma}_f$ is a stress scaling factor.
Creep potential and creep strain
================================
Assume there is a creep potential $g^c$ and the creep induced strain
rate is given by the flow rule
$$\dot { \mathbf \epsilon}^c ({ \mathbf \sigma})= {\dfrac{\partial g^c}{\partial { \mathbf \sigma}}}
$$ where ${ \mathbf\sigma}$ is the stress tensor.
To establish equivalence between the three-dimensional and the uniaxial formulation given above,
we use the effective stress defined by
${ \bar\sigma}={\sqrt{{\frac{3}{2}}}}{\left\Vert{\mathbf s}\right\Vert}$
with ${\mathbf s}= { \mathbf \sigma}-\frac{1}{3}{ \mathrm{tr}(\mathbf\sigma}){\mathbf I}$,
the deviatoric stress.
The creep strain rate is then expressed as
\dot { \mathbf \epsilon}^c ({ \sigma})= {\dfrac{\partial g^c}{\partial {\bar\sigma}}}
{\dfrac{\partial { \bar\sigma}}{\partial { \mathbf \sigma}}}
=\sqrt{{\frac{2}{3}}}{\dfrac{\partial g^c}{\partial {\bar \sigma}}}\dfrac{{\mathbf s}}{{\left\Vert{\mathbf s}\right\Vert}}
\end{gathered}$$
The above creep strain rate expression
must be valid for problems independent from the Euclidean dimension. Applying
the creep rate equation to a uniaxial stress state ${\mathbf \sigma} = \mathrm{diag}[\sigma_1, 0, 0]$,
which gives ${\mathbf s} = \mathrm{diag}[\frac{2}{3}\sigma_1, -\frac{2}{3}\sigma_1, -\frac{2}{3}\sigma_1]$,
we have
\dot { \epsilon_1}^c = {\dfrac{\partial g^c}{\partial { \bar\sigma}}}=Ae^{-Q/R_uT}\left(\dfrac{{ \sigma_1}}{{ \sigma}_f}\right)^m
\end{gathered}$$
which says
{\dfrac{\partial g^c}{\partial { \bar\sigma}}}=Ae^{-Q/R_u T}\left(\dfrac{{ \sigma_1}}{{ \sigma}_f}\right)^m
\end{gathered}$$
Therefore, the creep strain rate for multi-dimensional problems can be
derived as $$\begin{gathered}
\dot { \mathbf \epsilon}^c ({ \sigma})={\color{red} {\sqrt{\frac{3}{2}}}}Ae^{-Q/R_uT}\left(\dfrac{{ \sigma}}{{ \sigma}_f}\right)^m\dfrac{{\mathbf s}}{{\left\Vert{\mathbf s}\right\Vert}}
\end{gathered}$$
Stress integration
==================
The above creep strain rate expression can be simplified as $$\begin{gathered}
\dot { \mathbf \epsilon}^c ({ \sigma}) = b {\left\Vert{\mathbf s}\right\Vert}^{m-1} {\mathbf s}
\end{gathered}$$
with
$$b={\left(\dfrac{3}{2}\right)^{(m+1)/2}} \dfrac{Ae^{-Q/R_uT}}{{{ \sigma}_f}^m}$$
The strain rate under creeping condition can be expressed as
$$\begin{gathered}
\dot { \mathbf \epsilon}= \dot { \mathbf \epsilon}^e + \dot { \mathbf \epsilon}^T
+ \dot { \mathbf \epsilon}^c
\end{gathered}$$ Due to Hook’s law, the stress rate is
given by
$$\begin{gathered}
\dot { \mathbf \sigma}= \mathbf{C} \dot { \mathbf \epsilon}^e = \mathbf{C}
(\dot { \mathbf \epsilon}- \dot { \mathbf \epsilon}^T- \dot { \mathbf \epsilon}^c)
\end{gathered}$$
where
$\mathbf{C}:= \lambda \mathcal{J} + 2G \mathbf I \otimes \mathbf I $
with $\mathcal{J}$ the forth order identity, $\mathbf I$ the second order identity,
$\lambda$ the Lamé constant, $G$ the shear modulus, and $\otimes$ the tensor
is a fourth order tensor. Substituting equation and the expression of $C$
into the stress rate expression, equation , we have
$$\begin{gathered}
\dot { \mathbf \sigma}= \mathbf{C} (\dot { \mathbf \epsilon}- \dot { \mathbf \epsilon}^T)- 2bG {\left\Vert{\mathbf s}\right\Vert}^{m-1}
{\mathbf s}
\end{gathered}$$
The stress of the present time step, $n+1$, is then can be expressed as
$$\begin{gathered}
{ \mathbf \sigma}^{n+1} = { \mathbf \sigma}^{n} + \mathbf{C}
(\Delta { \mathbf \epsilon} - \alpha_T \Delta T \mathbf I)-
2bG \Delta t {\left\Vert{\mathbf s}^{n+1}\right\Vert}^{m-1} {\mathbf s}^{n+1}
\end{gathered}$$
with $\alpha_T$ the linear thermal expansion.
To solve the stress, the
Newton-Raphson is applied to .
Let $$\begin{gathered}
\mathbf{r}= { \mathbf \sigma}^{n+1} -
{ \mathbf \sigma}^{n} - \mathbf{C} (\Delta { \mathbf \epsilon} - \alpha_T \Delta T \mathbf I)
+ 2bG \Delta t {\left\Vert{\mathbf s}^{n+1}\right\Vert}^{m-1}
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
{\mathbf s}^{n+1}
\end{gathered}$$
be the residual. The Jacobian
of is derived as
$$\begin{gathered}
\mathbf{J}_{{ \mathbf \sigma}}= {\dfrac{\partial \mathbf{r}}{\partial { \mathbf \sigma}^{n+1}}} = \mathcal{I} + 2bG\Delta t {\left\Vert{\mathbf s}^{n+1}\right\Vert}^{m-1}
\left(\mathcal{I} - \frac{1}{3} \mathbf{I} \otimes \mathbf{I} + (m-1){\left\Vert{\mathbf s}^{n+1}\right\Vert}^{-2} {\mathbf s}^{n+1}\otimes {\mathbf s}^{n+1}\right)
\end{gathered}$$
Consistent tangent
==================
Once the converged stress integration is obtained, the tangential of
stress with respect to strain can be obtained straightforwardly by
applying the partial derivative to equation with respect to strain
increment as
$$\begin{aligned}
{\dfrac{\partial { \mathbf \sigma}^{n+1}}{\partial \Delta { \mathbf \epsilon}}} = \mathbf{C} - {\dfrac{\partial \left(2bG \Delta t {\left\Vert{\mathbf s}^{n+1}\right\Vert}^{m-1} {\mathbf s}^{n+1}\right)}{\partial \Delta { \mathbf \epsilon}}}
\end{aligned}$$
We see that $$\begin{aligned}
{\dfrac{\partial { \mathbf \sigma}^{n+1}}{\partial { \mathbf \epsilon}^{n+1}}} = \mathbf{J}_{{ \mathbf \sigma}}^{-1} \mathbf{C}
\end{aligned}$$
If the model is used for the thermo-mechanical problems and the problems
are solved by the monolithic scheme, the displacement-temperature block
of the global Jacobian can be derived as
$$\begin{aligned}
- 2G\dfrac{Q}{R} {{\int}_{\Omega} \dfrac{b}{T^2} {\left\Vert{\mathbf s}^{n+1}\right\Vert}^{m-1} \mathbf{B}^T {\mathbf s}^{n+1} \mathrm{d} \Omega}
\end{aligned}$$
*Note*: The above rate form of stress integration is implemented in ogs6.
Alternatively, one can use a absolute stress integration form, which can be found in the attached
[PDF](../doku_BGRa.pdf).
Example
=======
We verify the scheme by a one dimensional extension with constant
pressure of ${ \sigma}_0=5 ~\mbox{MPa}$. The values of the parameters are
given as $A=0.18 \mbox{d}^{-1}$, $m=5$, $Q=54 ~\mbox{kJ/mol}$,
$E=25000 ~\mbox{MPa}$, and the temperature is constant everywhere of
100 $^{\circ}\mbox{C}$. The analytical solution of the strain is given
straightforward as
$$\begin{gathered}
{ \epsilon}=-\dfrac{{ \sigma}_0}{E}-Ae^{-Q/RT}{ \sigma}_0^m t
\end{gathered}$$
The problem is solved as axisymmterical one. Therefore
$$\begin{gathered}
{ \epsilon_z}=-\dfrac{{ \sigma}_0}{E}-Ae^{-Q/RT}{ \sigma}_0^m t
\end{gathered}$$
Because of
$$\begin{gathered}
\lambda\epsilon_v^e+2G\epsilon_r^e=\lambda\epsilon_v^e+2G\epsilon_t^e=0
\end{gathered}$$
we have
$$\begin{gathered}
\epsilon_r^e=\epsilon_t^e
\end{gathered}$$
and
$$\begin{gathered}
\sigma_z=2G(\epsilon_z^e-\epsilon_r^e)=2G(\epsilon_z^e-\epsilon_t^e)
\end{gathered}$$
where superscript $e$ means elasticity and $c$ means creep. With the creep strain
formulas that are presented in the above context, the analytical solutions
of the other main strains are
$$\begin{gathered}
{ \epsilon_r}={ \epsilon_t}=\frac{\sigma_0}{2G}+\epsilon_z+
\frac{3}{2}A e^{-Q/RT}\sigma_0^m t
\end{gathered}$$
The comparison of the result of $\epsilon_z$
obtained by the present multidimensional scheme with the analytical
solution is shown in the following figure:
{{< img src="../bgra0.png" >}}