Skip to content
Snippets Groups Projects
CreepBRGa.pandoc 7.73 KiB
Newer Older
  • Learn to ignore specific revisions
  • +++
    date = "2018-07-19T15:15:45+01:00"
    title = "BGRa creep model"
    weight = 171
    project = "ThermoMechanics/CreepBGRa/SimpleAxisymmetricCreep/SimpleAxisymmetricCreepWithAnalyticSolution.prj"
    author = "Wenqing Wang"
    
    [menu]
      [menu.benchmarks]
        parent = "thermo-mechanics"
    
    +++
    
    {{< data-link >}}
    
    The BGRa stationary creep model defines the uniaxial creep strain
    increment as
    
    $$\Delta{ \epsilon}^c=Ae^{-Q/R_uT}\left(\dfrac{{ \sigma_1}}{{ \sigma}_f}\right)^m \Delta t
    
     where $\sigma_1$ is the stress, $A$, $m$ and $Q$ are parameters determined
    
    by experiments, $Q$ is called activation energy,
    $R_u=8.314472 \mbox{J/(Kmol)}$ is the universal gas constant, and
    ${ \sigma}_f$ is a stress scaling factor.
    
    Creep potential and creep strain
    ================================
    
    Assume there is a creep potential $g^c$ and the creep induced strain
    rate is given by the flow rule
    
    $$\dot { \mathbf \epsilon}^c ({ \mathbf \sigma})= {\dfrac{\partial g^c}{\partial { \mathbf \sigma}}}
    $$ where ${ \mathbf\sigma}$ is the stress tensor.
    To establish equivalence between the three-dimensional and the uniaxial formulation given above,
     we use the effective stress defined by
    ${ \bar\sigma}={\sqrt{{\frac{3}{2}}}}{\left\Vert{\mathbf s}\right\Vert}$
    with ${\mathbf s}= { \mathbf \sigma}-\frac{1}{3}{ \mathrm{tr}(\mathbf\sigma}){\mathbf I}$,
    the deviatoric stress. 
    The creep strain rate is then expressed as
    
    $$\begin{gathered}
    
    \dot { \mathbf \epsilon}^c ({ \sigma})=  {\dfrac{\partial g^c}{\partial {\bar\sigma}}}
    {\dfrac{\partial { \bar\sigma}}{\partial { \mathbf \sigma}}}
    =\sqrt{{\frac{2}{3}}}{\dfrac{\partial g^c}{\partial {\bar \sigma}}}\dfrac{{\mathbf s}}{{\left\Vert{\mathbf s}\right\Vert}}
    
    \end{gathered}$$
     The above creep strain rate expression
    
    must be valid for problems independent from the Euclidean dimension. Applying
    the creep rate equation to a uniaxial stress state ${\mathbf \sigma} = \mathrm{diag}[\sigma_1, 0, 0]$,
     which gives ${\mathbf s} = \mathrm{diag}[\frac{2}{3}\sigma_1, -\frac{2}{3}\sigma_1, -\frac{2}{3}\sigma_1]$,
     we have
    
     $$\begin{gathered}
    
    \dot { \epsilon_1}^c = {\dfrac{\partial g^c}{\partial { \bar\sigma}}}=Ae^{-Q/R_uT}\left(\dfrac{{ \sigma_1}}{{ \sigma}_f}\right)^m
    \end{gathered}$$
    which says 
    
    $$\begin{gathered}
    
     {\dfrac{\partial g^c}{\partial { \bar\sigma}}}=Ae^{-Q/R_u T}\left(\dfrac{{ \sigma_1}}{{ \sigma}_f}\right)^m
    
    \end{gathered}$$
    
    Therefore, the creep strain rate for multi-dimensional problems can be
    derived as $$\begin{gathered}
     \dot { \mathbf \epsilon}^c ({ \sigma})={\color{red} {\sqrt{\frac{3}{2}}}}Ae^{-Q/R_uT}\left(\dfrac{{ \sigma}}{{ \sigma}_f}\right)^m\dfrac{{\mathbf s}}{{\left\Vert{\mathbf s}\right\Vert}}
    \end{gathered}$$
    
    Stress integration
    ==================
    
    The above creep strain rate expression can be simplified as $$\begin{gathered}
      \dot { \mathbf \epsilon}^c ({ \sigma}) = b {\left\Vert{\mathbf s}\right\Vert}^{m-1} {\mathbf s}
    \end{gathered}$$
    with
    $$b={\left(\dfrac{3}{2}\right)^{(m+1)/2}} \dfrac{Ae^{-Q/R_uT}}{{{ \sigma}_f}^m}$$
    
    The strain rate under creeping condition can be expressed as
    $$\begin{gathered}
    
    \dot { \mathbf \epsilon}= \dot { \mathbf \epsilon}^e + \dot { \mathbf \epsilon}^T
                           + \dot { \mathbf \epsilon}^c
    
    \end{gathered}$$ Due to Hook’s law, the stress rate is
    given by 
    $$\begin{gathered}
    
    \dot { \mathbf \sigma}= \mathbf{C} \dot { \mathbf \epsilon}^e = \mathbf{C}
     (\dot { \mathbf \epsilon}- \dot { \mathbf \epsilon}^T- \dot { \mathbf \epsilon}^c)
    
    \end{gathered}$$ 
    where
    $\mathbf{C}:= \lambda \mathcal{J} + 2G \mathbf I \otimes \mathbf I  $ 
    with $\mathcal{J}$ the forth order identity, $\mathbf I$ the second order identity,
    
    $\lambda$ the Lamé constant,  $G$ the shear modulus, and $\otimes$  the tensor
    
    is a fourth order tensor. Substituting equation and the expression of $C$
    
    into the stress rate expression, equation , we have
     $$\begin{gathered}
    
    \dot { \mathbf \sigma}=  \mathbf{C} (\dot { \mathbf \epsilon}- \dot { \mathbf \epsilon}^T)- 2bG {\left\Vert{\mathbf s}\right\Vert}^{m-1} 
    
    {\mathbf s}
    \end{gathered}$$
    
    The stress of the present time step, $n+1$, is then can be expressed as
    $$\begin{gathered}
    
     { \mathbf \sigma}^{n+1} = { \mathbf \sigma}^{n} + \mathbf{C}
      (\Delta { \mathbf \epsilon} - \alpha_T \Delta T \mathbf I)-
    
     2bG \Delta t {\left\Vert{\mathbf s}^{n+1}\right\Vert}^{m-1} {\mathbf s}^{n+1}
    \end{gathered}$$
    
    with $\alpha_T$ the linear thermal expansion.
    
    
     To solve the stress, the
    Newton-Raphson is applied to .
     Let $$\begin{gathered}
     \mathbf{r}= { \mathbf \sigma}^{n+1} -
    
     { \mathbf \sigma}^{n} - \mathbf{C} (\Delta { \mathbf \epsilon} - \alpha_T \Delta T \mathbf I)
     + 2bG \Delta t {\left\Vert{\mathbf s}^{n+1}\right\Vert}^{m-1}
    
     {\mathbf s}^{n+1}
    \end{gathered}$$ 
    
    be the residual. The Jacobian
    of is derived as
     $$\begin{gathered}
     \mathbf{J}_{{ \mathbf \sigma}}= {\dfrac{\partial \mathbf{r}}{\partial { \mathbf \sigma}^{n+1}}}  =  \mathcal{I}  + 2bG\Delta t {\left\Vert{\mathbf s}^{n+1}\right\Vert}^{m-1} 
     \left(\mathcal{I} - \frac{1}{3} \mathbf{I} \otimes \mathbf{I} + (m-1){\left\Vert{\mathbf s}^{n+1}\right\Vert}^{-2} {\mathbf s}^{n+1}\otimes {\mathbf s}^{n+1}\right)
    \end{gathered}$$
    
    Consistent tangent
    ==================
    
    Once the converged stress integration is obtained, the tangential of
    stress with respect to strain can be obtained straightforwardly by
    applying the partial derivative to equation with respect to strain
    increment as 
    $$\begin{aligned}
      {\dfrac{\partial { \mathbf \sigma}^{n+1}}{\partial \Delta { \mathbf \epsilon}}} =   \mathbf{C}  - {\dfrac{\partial \left(2bG \Delta t {\left\Vert{\mathbf s}^{n+1}\right\Vert}^{m-1} {\mathbf s}^{n+1}\right)}{\partial \Delta { \mathbf \epsilon}}}
     \end{aligned}$$ 
    We see that $$\begin{aligned}
      {\dfrac{\partial { \mathbf \sigma}^{n+1}}{\partial { \mathbf \epsilon}^{n+1}}}  = \mathbf{J}_{{ \mathbf \sigma}}^{-1} \mathbf{C}
      \end{aligned}$$
    
    If the model is used for the thermo-mechanical problems and the problems
    are solved by the monolithic scheme, the displacement-temperature block
    of the global Jacobian can be derived as
     $$\begin{aligned}
     - 2G\dfrac{Q}{R} {{\int}_{\Omega} \dfrac{b}{T^2} {\left\Vert{\mathbf s}^{n+1}\right\Vert}^{m-1}  \mathbf{B}^T  {\mathbf s}^{n+1} \mathrm{d} \Omega}
     \end{aligned}$$
    
    *Note*: The above rate form of stress integration is implemented in ogs6.
     Alternatively, one can use a absolute stress integration form, which can be found in the attached 
     [PDF](../doku_BGRa.pdf).
    
    Example
    =======
    
    We verify the scheme by a one dimensional extension with constant
    pressure of ${ \sigma}_0=5 ~\mbox{MPa}$. The values of the parameters are
    given as $A=0.18 \mbox{d}^{-1}$, $m=5$, $Q=54 ~\mbox{kJ/mol}$,
    $E=25000 ~\mbox{MPa}$, and the temperature is constant everywhere of
    100 $^{\circ}\mbox{C}$. The analytical solution of the strain is given
    straightforward as 
    $$\begin{gathered}
    { \epsilon}=-\dfrac{{ \sigma}_0}{E}-Ae^{-Q/RT}{ \sigma}_0^m t
    \end{gathered}$$
    
    
    The problem is solved as axisymmterical one. Therefore
    $$\begin{gathered}
    { \epsilon_z}=-\dfrac{{ \sigma}_0}{E}-Ae^{-Q/RT}{ \sigma}_0^m t
    \end{gathered}$$
    
    Because of
    $$\begin{gathered}
    \lambda\epsilon_v^e+2G\epsilon_r^e=\lambda\epsilon_v^e+2G\epsilon_t^e=0
    \end{gathered}$$
     we have
    $$\begin{gathered}
    \epsilon_r^e=\epsilon_t^e
    \end{gathered}$$
      and
    $$\begin{gathered}
    \sigma_z=2G(\epsilon_z^e-\epsilon_r^e)=2G(\epsilon_z^e-\epsilon_t^e)
    \end{gathered}$$
    
    wenqing's avatar
    wenqing committed
    with $\epsilon^e=\epsilon-\epsilon^c$,
    
    where superscript $e$ means elasticity and $c$ means creep. With the creep strain
    formulas that are presented in the above context, the analytical solutions
    of the other main strains are
    
    $$\begin{gathered}
    { \epsilon_r}={ \epsilon_t}=\frac{\sigma_0}{2G}+\epsilon_z+
    \frac{3}{2}A e^{-Q/RT}\sigma_0^m t
    \end{gathered}$$
    
     The comparison of the result of $\epsilon_z$
    
    obtained by the present multidimensional scheme with the analytical
    solution is shown in the following figure:
    {{< img src="../bgra0.png" >}}