Skip to content
Snippets Groups Projects
Commit 0249119d authored by Dmitri Naumov's avatar Dmitri Naumov
Browse files

[web] Remove empty lines in latex scope.

This results in wrong rendering otherwise.
parent 05e5cc3b
No related branches found
No related tags found
No related merge requests found
...@@ -101,7 +101,6 @@ Newton-Raphson is applied to . ...@@ -101,7 +101,6 @@ Newton-Raphson is applied to .
Let $$\begin{gathered} Let $$\begin{gathered}
\mathbf{r}= { \mathbf \sigma}^{n+1} - \mathbf{r}= { \mathbf \sigma}^{n+1} -
{ \mathbf \sigma}^{n} - \mathbf{C} (\Delta { \mathbf \epsilon} - \alpha_T \Delta T \mathbf I) { \mathbf \sigma}^{n} - \mathbf{C} (\Delta { \mathbf \epsilon} - \alpha_T \Delta T \mathbf I)
+ 2bG \Delta t {\left\Vert{\mathbf s}^{n+1}\right\Vert}^{m-1} + 2bG \Delta t {\left\Vert{\mathbf s}^{n+1}\right\Vert}^{m-1}
{\mathbf s}^{n+1} {\mathbf s}^{n+1}
\end{gathered}$$ \end{gathered}$$
......
...@@ -18,7 +18,6 @@ weight = 102 ...@@ -18,7 +18,6 @@ weight = 102
We start with Poisson equation: We start with Poisson equation:
$$ $$
\begin{equation} \begin{equation}
- k\; \Delta p = Q \quad \text{in }\Omega - k\; \Delta p = Q \quad \text{in }\Omega
\end{equation}$$ \end{equation}$$
w.r.t boundary conditions w.r.t boundary conditions
......
...@@ -18,7 +18,6 @@ weight = 102 ...@@ -18,7 +18,6 @@ weight = 102
The Poisson equation is: The Poisson equation is:
$$ $$
\begin{equation} \begin{equation}
- k\; \Delta p = Q \quad \text{in }\Omega - k\; \Delta p = Q \quad \text{in }\Omega
\end{equation}$$ \end{equation}$$
w.r.t boundary conditions w.r.t boundary conditions
......
...@@ -20,7 +20,6 @@ $$ ...@@ -20,7 +20,6 @@ $$
\left( c \rho_R + \phi \frac{\partial \rho_R}{\partial p}\right) \frac{\partial \left( c \rho_R + \phi \frac{\partial \rho_R}{\partial p}\right) \frac{\partial
p}{\partial t} - \nabla \cdot p}{\partial t} - \nabla \cdot
\left[ \rho_R \frac{\kappa}{\mu} \left( \nabla p + \rho_R g \right) \right] \left[ \rho_R \frac{\kappa}{\mu} \left( \nabla p + \rho_R g \right) \right]
- Q_p = 0. - Q_p = 0.
$$ $$
where where
......
...@@ -33,7 +33,6 @@ We solve Laplace's Equation in 2D on a $1 \times 1$ square domain. ...@@ -33,7 +33,6 @@ We solve Laplace's Equation in 2D on a $1 \times 1$ square domain.
Laplace's equation is Laplace's equation is
$$ $$
\begin{equation} \begin{equation}
- \mathop{\mathrm{div}} (a \mathop{\mathrm{grad}} u) = 0 - \mathop{\mathrm{div}} (a \mathop{\mathrm{grad}} u) = 0
\end{equation} \end{equation}
$$ $$
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment