Newer
Older
* Copyright (c) 2012-2021, OpenGeoSys Community (http://www.opengeosys.org)
* Distributed under a Modified BSD License.
* See accompanying file LICENSE.txt or
* http://www.opengeosys.org/project/license
*/
#include <Eigen/Dense>
#include "Point3d.h"
namespace MathLib
{
double orientation3d(MathLib::Point3d const& p,
MathLib::Point3d const& a,
MathLib::Point3d const& b,
MathLib::Point3d const& c)
{
auto const pp = Eigen::Map<Eigen::Vector3d const>(p.getCoords());
auto const pa = Eigen::Map<Eigen::Vector3d const>(a.getCoords());
auto const pb = Eigen::Map<Eigen::Vector3d const>(b.getCoords());
auto const pc = Eigen::Map<Eigen::Vector3d const>(c.getCoords());
Eigen::Vector3d const u = pp - pa;
Eigen::Vector3d const v = pp - pb;
Eigen::Vector3d const w = pp - pc;
return u.cross(v).dot(w);
double calcTetrahedronVolume(MathLib::Point3d const& a,
MathLib::Point3d const& b,
MathLib::Point3d const& c,
MathLib::Point3d const& d)
{
auto const va = Eigen::Map<Eigen::Vector3d const>(a.getCoords());
auto const vb = Eigen::Map<Eigen::Vector3d const>(b.getCoords());
auto const vc = Eigen::Map<Eigen::Vector3d const>(c.getCoords());
auto const vd = Eigen::Map<Eigen::Vector3d const>(d.getCoords());
Eigen::Vector3d const w = vb - va;
Eigen::Vector3d const u = vc - va;
Eigen::Vector3d const v = vd - va;
return std::abs(u.cross(v).dot(w)) / 6.0;
double calcTriangleArea(MathLib::Point3d const& a, MathLib::Point3d const& b,
MathLib::Point3d const& c)
{
auto const va = Eigen::Map<Eigen::Vector3d const>(a.getCoords());
auto const vb = Eigen::Map<Eigen::Vector3d const>(b.getCoords());
auto const vc = Eigen::Map<Eigen::Vector3d const>(c.getCoords());
Eigen::Vector3d const u = vc - va;
Eigen::Vector3d const v = vb - va;
Eigen::Vector3d const w = u.cross(v);
return 0.5 * w.norm();
bool isPointInTetrahedron(MathLib::Point3d const& p, MathLib::Point3d const& a,
MathLib::Point3d const& b, MathLib::Point3d const& c,
MathLib::Point3d const& d, double eps)
{
double const d0(MathLib::orientation3d(d, a, b, c));
// if tetrahedron is not coplanar
if (std::abs(d0) > std::numeric_limits<double>::epsilon())
{
// if p is on the same side of bcd as a
double const d1(MathLib::orientation3d(d, p, b, c));
if (!(d0_sign == (d1 >= 0) || std::abs(d1) < eps))
{
// if p is on the same side of acd as b
double const d2(MathLib::orientation3d(d, a, p, c));
if (!(d0_sign == (d2 >= 0) || std::abs(d2) < eps))
{
// if p is on the same side of abd as c
double const d3(MathLib::orientation3d(d, a, b, p));
if (!(d0_sign == (d3 >= 0) || std::abs(d3) < eps))
{
// if p is on the same side of abc as d
double const d4(MathLib::orientation3d(p, a, b, c));
return d0_sign == (d4 >= 0) || std::abs(d4) < eps;
}
return false;
}
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
bool isPointInTriangle(MathLib::Point3d const& p,
MathLib::Point3d const& a,
MathLib::Point3d const& b,
MathLib::Point3d const& c,
double eps_pnt_out_of_plane,
double eps_pnt_out_of_tri,
MathLib::TriangleTest algorithm)
{
switch (algorithm)
{
case MathLib::GAUSS:
return gaussPointInTriangle(p, a, b, c, eps_pnt_out_of_plane,
eps_pnt_out_of_tri);
case MathLib::BARYCENTRIC:
return barycentricPointInTriangle(p, a, b, c, eps_pnt_out_of_plane,
eps_pnt_out_of_tri);
default:
ERR("Selected algorithm for point in triangle testing not found, "
"falling back on default.");
}
return gaussPointInTriangle(p, a, b, c, eps_pnt_out_of_plane,
eps_pnt_out_of_tri);
}
bool gaussPointInTriangle(MathLib::Point3d const& q,
MathLib::Point3d const& a,
MathLib::Point3d const& b,
MathLib::Point3d const& c,
double eps_pnt_out_of_plane,
double eps_pnt_out_of_tri)
{
auto const pa = Eigen::Map<Eigen::Vector3d const>(a.getCoords());
auto const pb = Eigen::Map<Eigen::Vector3d const>(b.getCoords());
auto const pc = Eigen::Map<Eigen::Vector3d const>(c.getCoords());
Eigen::Vector3d const v = pb - pa;
Eigen::Vector3d const w = pc - pa;
mat(0, 0) = v.squaredNorm();
mat(0, 1) = v[0] * w[0] + v[1] * w[1] + v[2] * w[2];
mat(1, 0) = mat(0, 1);
mat(1, 1) = w.squaredNorm();
Eigen::Vector2d y(
v[0] * (q[0] - a[0]) + v[1] * (q[1] - a[1]) + v[2] * (q[2] - a[2]),
w[0] * (q[0] - a[0]) + w[1] * (q[1] - a[1]) + w[2] * (q[2] - a[2]));
y = mat.partialPivLu().solve(y);
const double lower(eps_pnt_out_of_tri);
const double upper(1 + lower);
if (-lower <= y[0] && y[0] <= upper && -lower <= y[1] && y[1] <= upper &&
y[0] + y[1] <= upper)
{
MathLib::Point3d const q_projected(std::array<double, 3>{
{a[0] + y[0] * v[0] + y[1] * w[0], a[1] + y[0] * v[1] + y[1] * w[1],
a[2] + y[0] * v[2] + y[1] * w[2]}});
if (MathLib::sqrDist(q, q_projected) <= eps_pnt_out_of_plane)
}
return false;
}
bool barycentricPointInTriangle(MathLib::Point3d const& p,
MathLib::Point3d const& a,
MathLib::Point3d const& b,
MathLib::Point3d const& c,
double eps_pnt_out_of_plane,
double eps_pnt_out_of_tri)
{
if (std::abs(MathLib::orientation3d(p, a, b, c)) > eps_pnt_out_of_plane)
auto const vp = Eigen::Map<Eigen::Vector3d const>(p.getCoords());
auto const va = Eigen::Map<Eigen::Vector3d const>(a.getCoords());
auto const vb = Eigen::Map<Eigen::Vector3d const>(b.getCoords());
auto const vc = Eigen::Map<Eigen::Vector3d const>(c.getCoords());
Eigen::Vector3d const pa = va - vp;
Eigen::Vector3d const pb = vb - vp;
Eigen::Vector3d const pc = vc - vp;
double const area_x_2(calcTriangleArea(a, b, c) * 2);
double const alpha((pb.cross(pc).norm()) / area_x_2);
if (alpha < -eps_pnt_out_of_tri || alpha > 1 + eps_pnt_out_of_tri)
double const beta((pc.cross(pa).norm()) / area_x_2);
if (beta < -eps_pnt_out_of_tri || beta > 1 + eps_pnt_out_of_tri)
double const gamma(1 - alpha - beta);
return !(gamma < -eps_pnt_out_of_tri || gamma > 1 + eps_pnt_out_of_tri);
bool isPointInTriangleXY(MathLib::Point3d const& p,
MathLib::Point3d const& a,
MathLib::Point3d const& b,
MathLib::Point3d const& c)
{
// criterion: p-a = u0 * (b-a) + u1 * (c-a); 0 <= u0, u1 <= 1, u0+u1 <= 1
mat(0, 0) = b[0] - a[0];
mat(0, 1) = c[0] - a[0];
mat(1, 0) = b[1] - a[1];
mat(1, 1) = c[1] - a[1];
Eigen::Vector2d y;
y << p[0] - a[0], p[1] - a[1];
y = mat.partialPivLu().solve(y);
// check if u0 and u1 fulfills the condition
return 0 <= y[0] && y[0] <= 1 && 0 <= y[1] && y[1] <= 1 && y[0] + y[1] <= 1;
bool dividedByPlane(const MathLib::Point3d& a, const MathLib::Point3d& b,
const MathLib::Point3d& c, const MathLib::Point3d& d)
{
for (unsigned x = 0; x < 3; ++x)
{
const unsigned y = (x + 1) % 3;
const double abc =
(b[x] - a[x]) * (c[y] - a[y]) - (b[y] - a[y]) * (c[x] - a[x]);
const double abd =
(b[x] - a[x]) * (d[y] - a[y]) - (b[y] - a[y]) * (d[x] - a[x]);
if ((abc > 0 && abd < 0) || (abc < 0 && abd > 0))
}
return false;
}
bool isCoplanar(const MathLib::Point3d& a, const MathLib::Point3d& b,
const MathLib::Point3d& c, const MathLib::Point3d& d)
{
auto const pa = Eigen::Map<Eigen::Vector3d const>(a.getCoords());
auto const pb = Eigen::Map<Eigen::Vector3d const>(b.getCoords());
auto const pc = Eigen::Map<Eigen::Vector3d const>(c.getCoords());
auto const pd = Eigen::Map<Eigen::Vector3d const>(d.getCoords());
Eigen::Vector3d const ab = pb - pa;
Eigen::Vector3d const ac = pc - pa;
Eigen::Vector3d const ad = pd - pa;
auto const eps_squared =
std::pow(std::numeric_limits<double>::epsilon(), 2);
if (ab.squaredNorm() < eps_squared || ac.squaredNorm() < eps_squared ||
ad.squaredNorm() < eps_squared)
{
return true;
}
// In exact arithmetic <ac*ad^T, ab> should be zero
// if all four points are coplanar.
const double sqr_scalar_triple(std::pow(ac.cross(ad).dot(ab), 2));
// Due to evaluating the above numerically some cancellation or rounding
// can occur. For this reason a normalisation factor is introduced.
const double normalisation_factor =
(ab.squaredNorm() * ac.squaredNorm() * ad.squaredNorm());
// a = (0,0,0), b=(1,0,0), c=(0,1,0) and d=(1,1,1e-6) are considered as
// coplanar
// a = (0,0,0), b=(1,0,0), c=(0,1,0) and d=(1,1,1e-5) are considered as not
// coplanar
return (sqr_scalar_triple / normalisation_factor < 1e-11);
}
} // end namespace MathLib