Skip to content
Snippets Groups Projects
VectorMatrixAssembler.cpp 7.26 KiB
Newer Older
  • Learn to ignore specific revisions
  •  * Copyright (c) 2012-2017, OpenGeoSys Community (http://www.opengeosys.org)
    
     *            Distributed under a Modified BSD License.
     *              See accompanying file LICENSE.txt or
     *              http://www.opengeosys.org/project/license
     *
     */
    
    #include "VectorMatrixAssembler.h"
    
    #include <cassert>
    
    #include "NumLib/DOF/DOFTableUtil.h"
    #include "MathLib/LinAlg/Eigen/EigenMapTools.h"
    #include "LocalAssemblerInterface.h"
    
    
    namespace ProcessLib
    {
    
    static std::unordered_map<std::type_index, const std::vector<double>>
    
    getPreviousLocalSolutionsOfCoupledProcesses(
    
        const CoupledSolutionsForStaggeredScheme& coupled_solutions,
    
        const std::vector<GlobalIndexType>& indices)
    {
    
        std::unordered_map<std::type_index, const std::vector<double>>
    
        for (auto const& coupled_process_pair : coupled_solutions.coupled_processes)
    
            auto const& coupled_pcs = coupled_process_pair.second;
    
            auto const prevous_time_x = coupled_pcs.getPreviousTimeStepSolution();
            if (prevous_time_x)
            {
                auto const local_coupled_x0 = prevous_time_x->get(indices);
    
                BaseLib::insertIfTypeIndexKeyUniqueElseError(
    
                    local_coupled_xs0, coupled_process_pair.first, local_coupled_x0,
    
            }
            else
            {
                const std::vector<double> local_coupled_x0;
    
                BaseLib::insertIfTypeIndexKeyUniqueElseError(
    
                    local_coupled_xs0, coupled_process_pair.first, local_coupled_x0,
    
    VectorMatrixAssembler::VectorMatrixAssembler(
        std::unique_ptr<AbstractJacobianAssembler>&& jacobian_assembler)
        : _jacobian_assembler(std::move(jacobian_assembler))
    {
    }
    
    
    void VectorMatrixAssembler::preAssemble(
        const std::size_t mesh_item_id, LocalAssemblerInterface& local_assembler,
        const NumLib::LocalToGlobalIndexMap& dof_table, const double t,
        const GlobalVector& x)
    {
        auto const indices = NumLib::getIndices(mesh_item_id, dof_table);
        auto const local_x = x.get(indices);
    
        local_assembler.preAssemble(t, local_x);
    }
    
    
    void VectorMatrixAssembler::assemble(
        const std::size_t mesh_item_id, LocalAssemblerInterface& local_assembler,
        const NumLib::LocalToGlobalIndexMap& dof_table, const double t,
    
        const GlobalVector& x, GlobalMatrix& M, GlobalMatrix& K, GlobalVector& b,
    
        const CoupledSolutionsForStaggeredScheme* coupled_solutions)
    
    {
        auto const indices = NumLib::getIndices(mesh_item_id, dof_table);
        auto const local_x = x.get(indices);
    
        _local_M_data.clear();
        _local_K_data.clear();
        _local_b_data.clear();
    
    
        if (!coupled_solutions)
    
        {
            local_assembler.assemble(t, local_x, _local_M_data, _local_K_data,
    
            auto local_coupled_xs0 = getPreviousLocalSolutionsOfCoupledProcesses(
    
                *coupled_solutions, indices);
    
            auto local_coupled_xs = getCurrentLocalSolutionsOfCoupledProcesses(
    
                coupled_solutions->coupled_xs, indices);
    
            if (local_coupled_xs0.empty() || local_coupled_xs.empty())
    
            {
                local_assembler.assemble(t, local_x, _local_M_data, _local_K_data,
                                         _local_b_data);
            }
            else
            {
    
                ProcessLib::LocalCoupledSolutions local_coupled_solutions(
                    coupled_solutions->dt, coupled_solutions->coupled_processes,
    
                    std::move(local_coupled_xs0), std::move(local_coupled_xs));
    
                local_assembler.assembleWithCoupledTerm(
                    t, local_x, _local_M_data, _local_K_data, _local_b_data,
    
                    local_coupled_solutions);
    
    
        auto const num_r_c = indices.size();
        auto const r_c_indices =
            NumLib::LocalToGlobalIndexMap::RowColumnIndices(indices, indices);
    
    
            auto const local_M = MathLib::toMatrix(_local_M_data, num_r_c, num_r_c);
            M.add(r_c_indices, local_M);
        }
    
            auto const local_K = MathLib::toMatrix(_local_K_data, num_r_c, num_r_c);
            K.add(r_c_indices, local_K);
        }
    
            assert(_local_b_data.size() == num_r_c);
            b.add(indices, _local_b_data);
        }
    }
    
    void VectorMatrixAssembler::assembleWithJacobian(
        std::size_t const mesh_item_id, LocalAssemblerInterface& local_assembler,
        NumLib::LocalToGlobalIndexMap const& dof_table, const double t,
        GlobalVector const& x, GlobalVector const& xdot, const double dxdot_dx,
        const double dx_dx, GlobalMatrix& M, GlobalMatrix& K, GlobalVector& b,
    
        GlobalMatrix& Jac, const CoupledSolutionsForStaggeredScheme* coupled_solutions)
    
    {
        auto const indices = NumLib::getIndices(mesh_item_id, dof_table);
        auto const local_x = x.get(indices);
        auto const local_xdot = xdot.get(indices);
    
        _local_M_data.clear();
        _local_K_data.clear();
        _local_b_data.clear();
        _local_Jac_data.clear();
    
    
        if (!coupled_solutions)
    
        {
            _jacobian_assembler->assembleWithJacobian(
                local_assembler, t, local_x, local_xdot, dxdot_dx, dx_dx,
    
                _local_M_data, _local_K_data, _local_b_data, _local_Jac_data);
    
            auto local_coupled_xs0 = getPreviousLocalSolutionsOfCoupledProcesses(
    
                *coupled_solutions, indices);
    
            auto local_coupled_xs = getCurrentLocalSolutionsOfCoupledProcesses(
    
                coupled_solutions->coupled_xs, indices);
    
            if (local_coupled_xs0.empty() || local_coupled_xs.empty())
            {
                _jacobian_assembler->assembleWithJacobian(
                    local_assembler, t, local_x, local_xdot, dxdot_dx, dx_dx,
                    _local_M_data, _local_K_data, _local_b_data, _local_Jac_data);
            }
            else
    
                ProcessLib::LocalCoupledSolutions local_coupled_solutions(
                    coupled_solutions->dt, coupled_solutions->coupled_processes,
    
                    std::move(local_coupled_xs0), std::move(local_coupled_xs));
    
    
                _jacobian_assembler->assembleWithJacobianAndCoupling(
    
                    local_assembler, t, local_x, local_xdot, dxdot_dx, dx_dx,
                    _local_M_data, _local_K_data, _local_b_data, _local_Jac_data,
    
                    local_coupled_solutions);
    
    
        auto const num_r_c = indices.size();
        auto const r_c_indices =
            NumLib::LocalToGlobalIndexMap::RowColumnIndices(indices, indices);
    
    
            auto const local_M = MathLib::toMatrix(_local_M_data, num_r_c, num_r_c);
            M.add(r_c_indices, local_M);
        }
    
            auto const local_K = MathLib::toMatrix(_local_K_data, num_r_c, num_r_c);
            K.add(r_c_indices, local_K);
        }
    
            assert(_local_b_data.size() == num_r_c);
            b.add(indices, _local_b_data);
        }
    
            auto const local_Jac =
                MathLib::toMatrix(_local_Jac_data, num_r_c, num_r_c);
            Jac.add(r_c_indices, local_Jac);
    
            OGS_FATAL(
                "No Jacobian has been assembled! This might be due to programming "
                "errors in the local assembler of the current process.");