Forked from
ogs / ogs
2362 commits behind the upstream repository.
-
Tom Fischer authoredTom Fischer authored
Code owners
Assign users and groups as approvers for specific file changes. Learn more.
TimeLoop.cpp 31.40 KiB
/**
* \file
*
* \copyright
* Copyright (c) 2012-2023, OpenGeoSys Community (http://www.opengeosys.org)
* Distributed under a Modified BSD License.
* See accompanying file LICENSE.txt or
* http://www.opengeosys.org/project/license
*/
#include "TimeLoop.h"
#include <range/v3/algorithm/any_of.hpp>
#include <range/v3/algorithm/contains.hpp>
#include <range/v3/view/map.hpp>
#include "BaseLib/Error.h"
#include "BaseLib/RunTime.h"
#include "MathLib/LinAlg/LinAlg.h"
#include "NumLib/ODESolver/ConvergenceCriterionPerComponent.h"
#include "NumLib/ODESolver/PETScNonlinearSolver.h"
#include "NumLib/ODESolver/TimeDiscretizedODESystem.h"
#include "ProcessData.h"
namespace
{
bool isMonolithicProcess(ProcessLib::ProcessData const& process_data)
{
return process_data.process.isMonolithicSchemeUsed();
}
void updateDeactivatedSubdomains(
std::vector<std::unique_ptr<ProcessLib::ProcessData>> const&
per_process_data,
double const t)
{
for (auto& process_data : per_process_data)
{
process_data->process.updateDeactivatedSubdomains(
t, process_data->process_id);
}
}
bool isOutputStep(std::vector<ProcessLib::Output> const& outputs,
const int timestep, const double t)
{
return ranges::any_of(outputs, [timestep, t](auto const& output)
{ return output.isOutputStep(timestep, t); });
}
void preOutputForAllProcesses(
int const timestep, double const t, double const dt,
std::vector<std::unique_ptr<ProcessLib::ProcessData>> const&
per_process_data,
std::vector<GlobalVector*> const& process_solutions,
std::vector<GlobalVector*> const& process_solutions_prev,
std::vector<ProcessLib::Output> const& outputs)
{
if (!isOutputStep(outputs, timestep, t))
{
return;
}
for (auto& process_data : per_process_data)
{
auto const process_id = process_data->process_id;
auto& pcs = process_data->process;
pcs.preOutput(t, dt, process_solutions, process_solutions_prev,
process_id);
}
}
} // namespace
namespace ProcessLib
{
void preTimestepForAllProcesses(
double const t, double const dt,
std::vector<std::unique_ptr<ProcessData>> const& per_process_data,
std::vector<GlobalVector*> const& _process_solutions)
{
for (auto& process_data : per_process_data)
{
auto const process_id = process_data->process_id;
auto& pcs = process_data->process;
pcs.preTimestep(_process_solutions, t, dt, process_id);
}
}
void postTimestepForAllProcesses(
double const t, double const dt,
std::vector<std::unique_ptr<ProcessData>> const& per_process_data,
std::vector<GlobalVector*> const& process_solutions,
std::vector<GlobalVector*> const& process_solutions_prev)
{
for (auto& process_data : per_process_data)
{
auto const process_id = process_data->process_id;
auto& pcs = process_data->process;
pcs.computeSecondaryVariable(t, dt, process_solutions,
*process_solutions_prev[process_id],
process_id);
pcs.postTimestep(process_solutions, process_solutions_prev, t, dt,
process_id);
}
}
template <NumLib::ODESystemTag ODETag>
void setTimeDiscretizedODESystem(
ProcessData& process_data,
NumLib::ODESystem<ODETag, NumLib::NonlinearSolverTag::Picard>& ode_sys)
{
using Tag = NumLib::NonlinearSolverTag;
// A concrete Picard solver
using NonlinearSolverPicard = NumLib::NonlinearSolver<Tag::Picard>;
// A concrete Newton solver
using NonlinearSolverNewton = NumLib::NonlinearSolver<Tag::Newton>;
if (dynamic_cast<NonlinearSolverPicard*>(&process_data.nonlinear_solver))
{
// The Picard solver can also work with a Newton-ready ODE,
// because the Newton ODESystem derives from the Picard ODESystem.
// So no further checks are needed here.
process_data.tdisc_ode_sys = std::make_unique<
NumLib::TimeDiscretizedODESystem<ODETag, Tag::Picard>>(
process_data.process_id, ode_sys, *process_data.time_disc);
}
// TODO (naumov) Provide a function to nonlinear_solver to distinguish the
// types. Could be handy, because a nonlinear solver could handle both types
// like PETScSNES.
else if ((dynamic_cast<NonlinearSolverNewton*>(
&process_data.nonlinear_solver) != nullptr)
#ifdef USE_PETSC
|| (dynamic_cast<NumLib::PETScNonlinearSolver*>(
&process_data.nonlinear_solver) != nullptr)
#endif // USE_PETSC
)
{
// The Newton-Raphson method needs a Newton-ready ODE.
using ODENewton = NumLib::ODESystem<ODETag, Tag::Newton>;
if (auto* ode_newton = dynamic_cast<ODENewton*>(&ode_sys))
{
process_data.tdisc_ode_sys = std::make_unique<
NumLib::TimeDiscretizedODESystem<ODETag, Tag::Newton>>(
process_data.process_id, *ode_newton, *process_data.time_disc);
}
else
{
OGS_FATAL(
"You are trying to solve a non-Newton-ready ODE with the"
" Newton-Raphson method. Aborting");
}
}
else
{
OGS_FATAL("Encountered unknown nonlinear solver type. Aborting");
}
}
void setTimeDiscretizedODESystem(ProcessData& process_data)
{
setTimeDiscretizedODESystem(process_data, process_data.process);
}
std::pair<std::vector<GlobalVector*>, std::vector<GlobalVector*>>
setInitialConditions(
double const t0,
std::vector<std::unique_ptr<ProcessData>> const& per_process_data)
{
std::vector<GlobalVector*> process_solutions;
std::vector<GlobalVector*> process_solutions_prev;
for (auto const& process_data : per_process_data)
{
auto const process_id = process_data->process_id;
auto& ode_sys = *process_data->tdisc_ode_sys;
// append a solution vector of suitable size
process_solutions.emplace_back(
&NumLib::GlobalVectorProvider::provider.getVector(
ode_sys.getMatrixSpecifications(process_id)));
process_solutions_prev.emplace_back(
&NumLib::GlobalVectorProvider::provider.getVector(
ode_sys.getMatrixSpecifications(process_id)));
}
for (auto const& process_data : per_process_data)
{
auto& pcs = process_data->process;
auto const process_id = process_data->process_id;
pcs.setInitialConditions(process_solutions, process_solutions_prev, t0,
process_id);
auto& time_disc = *process_data->time_disc;
time_disc.setInitialState(t0); // push IC
}
return {process_solutions, process_solutions_prev};
}
void calculateNonEquilibriumInitialResiduum(
std::vector<std::unique_ptr<ProcessData>> const& per_process_data,
std::vector<GlobalVector*> const& process_solutions,
std::vector<GlobalVector*> const& process_solutions_prev)
{
for (auto const& process_data : per_process_data)
{
auto& nonlinear_solver = process_data->nonlinear_solver;
setEquationSystem(*process_data);
nonlinear_solver.calculateNonEquilibriumInitialResiduum(
process_solutions, process_solutions_prev,
process_data->process_id);
}
}
NumLib::NonlinearSolverStatus solveOneTimeStepOneProcess(
std::vector<GlobalVector*>& x, std::vector<GlobalVector*> const& x_prev,
std::size_t const timestep, double const t, double const delta_t,
ProcessData const& process_data, std::vector<Output> const& outputs)
{
auto& process = process_data.process;
int const process_id = process_data.process_id;
auto& time_disc = *process_data.time_disc;
auto& nonlinear_solver = process_data.nonlinear_solver;
setEquationSystem(process_data);
// Note: Order matters!
// First advance to the next timestep, then set known solutions at that
// time, afterwards pass the right solution vector and time to the
// preTimestep() hook.
time_disc.nextTimestep(t, delta_t);
auto const post_iteration_callback =
[&](int iteration, std::vector<GlobalVector*> const& x)
{
// Note: We don't call the postNonLinearSolver(), preOutput(),
// computeSecondaryVariable() and postTimestep() hooks here. This might
// lead to some inconsistencies in the data compared to regular output.
for (auto const& output : outputs)
{
output.doOutputNonlinearIteration(process, process_id, timestep, t,
iteration, x);
}
};
auto const nonlinear_solver_status =
nonlinear_solver.solve(x, x_prev, post_iteration_callback, process_id);
if (!nonlinear_solver_status.error_norms_met)
{
return nonlinear_solver_status;
}
process.postNonLinearSolver(x, x_prev, t, delta_t, process_id);
return nonlinear_solver_status;
}
TimeLoop::TimeLoop(std::vector<Output>&& outputs,
std::vector<std::unique_ptr<ProcessData>>&& per_process_data,
const int global_coupling_max_iterations,
std::vector<std::unique_ptr<NumLib::ConvergenceCriterion>>&&
global_coupling_conv_crit,
std::map<std::string, int>&& local_coupling_processes,
const double start_time, const double end_time)
: _outputs{std::move(outputs)},
_per_process_data(std::move(per_process_data)),
_start_time(start_time),
_end_time(end_time),
_global_coupling_max_iterations(global_coupling_max_iterations),
_global_coupling_conv_crit(std::move(global_coupling_conv_crit)),
_local_coupling_processes(std::move(local_coupling_processes))
{
}
void TimeLoop::setCoupledSolutions()
{
for (auto const& process_data : _per_process_data)
{
auto const& x = *_process_solutions[process_data->process_id];
// Create a vector to store the solution of the last coupling iteration
auto& x0 = NumLib::GlobalVectorProvider::provider.getVector(x);
MathLib::LinAlg::copy(x, x0);
// append a solution vector of suitable size
_solutions_of_last_cpl_iteration.emplace_back(&x0);
}
}
bool computationOfChangeNeeded(
NumLib::TimeStepAlgorithm const* timestep_algorithm, double const time)
{
// for the first time step we can't compute the changes to the previous
// time step
if (time == timestep_algorithm->begin())
{
return false;
}
return timestep_algorithm->isSolutionErrorComputationNeeded();
}
double computeRelativeSolutionChange(
NumLib::ConvergenceCriterion const* conv_crit, GlobalVector const& x,
GlobalVector const& x_prev)
{
const MathLib::VecNormType norm_type = (conv_crit)
? conv_crit->getVectorNormType()
: MathLib::VecNormType::NORM2;
return NumLib::computeRelativeNorm(x, x_prev, norm_type);
}
std::pair<double, bool> TimeLoop::computeTimeStepping(
const double prev_dt, double& t, std::size_t& accepted_steps,
std::size_t& rejected_steps,
std::vector<std::function<double(double, double)>> const&
time_step_constraints)
{
bool all_process_steps_accepted = true;
// Get minimum time step size among step sizes of all processes.
double dt = std::numeric_limits<double>::max();
constexpr double eps = std::numeric_limits<double>::epsilon();
bool const is_initial_step =
std::any_of(_per_process_data.begin(), _per_process_data.end(),
[](auto const& ppd) -> bool
{ return ppd->timestep_current.timeStepNumber() == 0; });
for (std::size_t i = 0; i < _per_process_data.size(); i++)
{
auto& ppd = *_per_process_data[i];
const auto& timestep_algorithm = ppd.timestep_algorithm;
auto const& x = *_process_solutions[i];
auto const& x_prev = *_process_solutions_prev[i];
const double solution_error =
computationOfChangeNeeded(timestep_algorithm.get(), t)
? computeRelativeSolutionChange(ppd.conv_crit.get(), x, x_prev)
: 0.0;
ppd.timestep_current.setAccepted(
ppd.nonlinear_solver_status.error_norms_met);
auto [previous_step_accepted, timestepper_dt] =
timestep_algorithm->next(
solution_error, ppd.nonlinear_solver_status.number_iterations,
ppd.timestep_previous, ppd.timestep_current);
if (!previous_step_accepted &&
// In case of FixedTimeStepping, which makes
// timestep_algorithm->next(...) return false when the ending time
// is reached.
t + eps < timestep_algorithm->end())
{
// Not all processes have accepted steps.
all_process_steps_accepted = false;
}
if (!ppd.nonlinear_solver_status.error_norms_met)
{
WARN(
"Time step will be rejected due to nonlinear solver "
"divergence.");
all_process_steps_accepted = false;
}
if (timestepper_dt > eps ||
std::abs(t - timestep_algorithm->end()) < eps)
{
dt = std::min(timestepper_dt, dt);
}
}
if (all_process_steps_accepted)
{
_repeating_times_of_rejected_step = 0;
}
else
{
_repeating_times_of_rejected_step++;
}
bool last_step_rejected = false;
if (!is_initial_step)
{
if (all_process_steps_accepted)
{
accepted_steps++;
last_step_rejected = false;
}
else
{
if (t < _end_time || std::abs(t - _end_time) < eps)
{
t -= prev_dt;
rejected_steps++;
last_step_rejected = true;
}
}
}
// adjust step size considering external communciation_point_calculators
for (auto const& time_step_constain : time_step_constraints)
{
dt = std::min(dt, time_step_constain(t, dt));
}
// Check whether the time stepping is stabilized
if (std::abs(dt - prev_dt) < eps)
{
if (last_step_rejected)
{
OGS_FATAL(
"The new step size of {:g} is the same as that of the previous "
"rejected time step. \nPlease re-run ogs with a proper "
"adjustment in the numerical settings, \ne.g those for time "
"stepper, local or global non-linear solver.",
dt);
}
else
{
DBUG("The time stepping is stabilized with the step size of {:g}.",
dt);
}
}
// Reset the time step with the minimum step size, dt
// Update the solution of the previous time step.
for (std::size_t i = 0; i < _per_process_data.size(); i++)
{
if (all_process_steps_accepted)
{
auto& ppd = *_per_process_data[i];
NumLib::updateTimeSteps(dt, ppd.timestep_previous,
ppd.timestep_current);
auto& timestep_algorithm = ppd.timestep_algorithm;
timestep_algorithm->resetCurrentTimeStep(dt, ppd.timestep_previous,
ppd.timestep_current);
}
auto& x = *_process_solutions[i];
auto& x_prev = *_process_solutions_prev[i];
if (all_process_steps_accepted)
{
MathLib::LinAlg::copy(x, x_prev); // pushState
}
else
{
if (t < _end_time || std::abs(t - _end_time) < eps)
{
WARN(
"Time step {:d} was rejected {:d} times and it will be "
"repeated with a reduced step size.",
accepted_steps + 1, _repeating_times_of_rejected_step);
MathLib::LinAlg::copy(x_prev, x); // popState
}
}
}
return {dt, last_step_rejected};
}
std::vector<std::function<double(double, double)>>
TimeLoop::generateOutputTimeStepConstraints(
std::vector<double>&& fixed_times) const
{
std::vector<std::function<double(double, double)>> const
time_step_constraints{
[fixed_times = std::move(fixed_times)](double t, double dt) {
return NumLib::possiblyClampDtToNextFixedTime(t, dt,
fixed_times);
},
[this](double t, double dt)
{
if (t < _end_time && t + dt > _end_time)
{
return _end_time - t;
}
return dt;
}};
return time_step_constraints;
}
/// initialize output, convergence criterion, etc.
void TimeLoop::initialize()
{
for (auto const& process_data : _per_process_data)
{
auto& pcs = process_data->process;
for (auto& output : _outputs)
{
output.addProcess(pcs);
}
setTimeDiscretizedODESystem(*process_data);
if (auto* conv_crit =
dynamic_cast<NumLib::ConvergenceCriterionPerComponent*>(
process_data->conv_crit.get()))
{
int const process_id = process_data->process_id;
conv_crit->setDOFTable(pcs.getDOFTable(process_id), pcs.getMesh());
}
}
// initial solution storage
std::tie(_process_solutions, _process_solutions_prev) =
setInitialConditions(_start_time, _per_process_data);
// All _per_process_data share the first process.
bool const is_staggered_coupling =
!isMonolithicProcess(*_per_process_data[0]);
if (is_staggered_coupling)
{
setCoupledSolutions();
}
updateDeactivatedSubdomains(_per_process_data, _start_time);
// Output initial conditions
{
preOutputInitialConditions(_start_time);
outputSolutions(0, _start_time, &Output::doOutput);
}
auto const time_step_constraints = generateOutputTimeStepConstraints(
calculateUniqueFixedTimesForAllOutputs(_outputs));
std::tie(_dt, _last_step_rejected) =
computeTimeStepping(0.0, _current_time, _accepted_steps,
_rejected_steps, time_step_constraints);
calculateNonEquilibriumInitialResiduum(
_per_process_data, _process_solutions, _process_solutions_prev);
}
bool TimeLoop::executeTimeStep()
{
BaseLib::RunTime time_timestep;
time_timestep.start();
_current_time += _dt;
const std::size_t timesteps = _accepted_steps + 1;
// TODO(wenqing): , input option for time unit.
INFO(
"=== Time stepping at step #{:d} and time {:.15g} with step size "
"{:.15g}",
timesteps, _current_time, _dt);
updateDeactivatedSubdomains(_per_process_data, _current_time);
successful_time_step =
preTsNonlinearSolvePostTs(_current_time, _dt, timesteps);
INFO("[time] Time step #{:d} took {:g} s.", timesteps,
time_timestep.elapsed());
return successful_time_step;
}
bool TimeLoop::calculateNextTimeStep()
{
const double prev_dt = _dt;
double const current_time = _current_time;
const std::size_t timesteps = _accepted_steps + 1;
auto const time_step_constraints = generateOutputTimeStepConstraints(
calculateUniqueFixedTimesForAllOutputs(_outputs));
// _last_step_rejected is also checked in computeTimeStepping.
std::tie(_dt, _last_step_rejected) =
computeTimeStepping(prev_dt, _current_time, _accepted_steps,
_rejected_steps, time_step_constraints);
if (!_last_step_rejected)
{
outputSolutions(timesteps, current_time, &Output::doOutput);
}
if (std::abs(_current_time - _end_time) <
std::numeric_limits<double>::epsilon() ||
_current_time + _dt > _end_time)
{
return false;
}
if (_dt < std::numeric_limits<double>::epsilon())
{
WARN(
"Time step size of {:g} is too small.\n"
"Time stepping stops at step {:d} and at time of {:g}.",
_dt, timesteps, _current_time);
return false;
}
return true;
}
void TimeLoop::outputLastTimeStep() const
{
INFO(
"The whole computation of the time stepping took {:d} steps, in which\n"
"\t the accepted steps are {:d}, and the rejected steps are {:d}.\n",
_accepted_steps + _rejected_steps, _accepted_steps, _rejected_steps);
// output last time step
if (successful_time_step)
{
outputSolutions(_accepted_steps + _rejected_steps, _current_time,
&Output::doOutputLastTimestep);
}
}
bool TimeLoop::preTsNonlinearSolvePostTs(double const t, double const dt,
std::size_t const timesteps)
{
preTimestepForAllProcesses(t, dt, _per_process_data, _process_solutions);
// All _per_process_data share the first process.
bool const is_staggered_coupling =
!isMonolithicProcess(*_per_process_data[0]);
NumLib::NonlinearSolverStatus nonlinear_solver_status;
if (is_staggered_coupling)
{
nonlinear_solver_status =
solveCoupledEquationSystemsByStaggeredScheme(t, dt, timesteps);
}
else
{
nonlinear_solver_status =
solveUncoupledEquationSystems(t, dt, timesteps);
}
// Run post time step only if the last iteration was successful.
// Otherwise it runs the risks to get the same errors as in the last
// iteration, an exception thrown in assembly, for example.
if (nonlinear_solver_status.error_norms_met)
{
// Later on, the timestep_algorithm might reject the timestep. We assume
// that this is a rare case, so still, we call preOutput() here. We
// don't expect a large overhead from it.
preOutputForAllProcesses(timesteps, t, dt, _per_process_data,
_process_solutions, _process_solutions_prev,
_outputs);
postTimestepForAllProcesses(t, dt, _per_process_data,
_process_solutions,
_process_solutions_prev);
}
return nonlinear_solver_status.error_norms_met;
}
static NumLib::NonlinearSolverStatus solveMonolithicProcess(
const double t, const double dt, const std::size_t timestep_id,
ProcessData const& process_data, std::vector<GlobalVector*>& x,
std::vector<GlobalVector*> const& x_prev,
std::vector<Output> const& outputs)
{
BaseLib::RunTime time_timestep_process;
time_timestep_process.start();
auto const nonlinear_solver_status = solveOneTimeStepOneProcess(
x, x_prev, timestep_id, t, dt, process_data, outputs);
INFO("[time] Solving process #{:d} took {:g} s in time step #{:d}",
process_data.process_id, time_timestep_process.elapsed(), timestep_id);
return nonlinear_solver_status;
}
static constexpr std::string_view timestepper_cannot_reduce_dt =
"Time stepper cannot reduce the time step size further.";
NumLib::NonlinearSolverStatus TimeLoop::solveUncoupledEquationSystems(
const double t, const double dt, const std::size_t timestep_id)
{
NumLib::NonlinearSolverStatus nonlinear_solver_status;
for (auto const& process_data : _per_process_data)
{
auto const process_id = process_data->process_id;
nonlinear_solver_status = solveMonolithicProcess(
t, dt, timestep_id, *process_data, _process_solutions,
_process_solutions_prev, _outputs);
process_data->nonlinear_solver_status = nonlinear_solver_status;
if (!nonlinear_solver_status.error_norms_met)
{
ERR("The nonlinear solver failed in time step #{:d} at t = {:g} s "
"for process #{:d}.",
timestep_id, t, process_id);
if (!process_data->timestep_algorithm->canReduceTimestepSize(
process_data->timestep_current,
process_data->timestep_previous))
{
// save unsuccessful solution
for (auto const& output : _outputs)
{
output.doOutputAlways(
process_data->process, process_id, timestep_id, t,
process_data->nonlinear_solver_status.number_iterations,
_process_solutions);
}
OGS_FATAL(timestepper_cannot_reduce_dt.data());
}
return nonlinear_solver_status;
}
}
return nonlinear_solver_status;
}
NumLib::NonlinearSolverStatus
TimeLoop::solveCoupledEquationSystemsByStaggeredScheme(
const double t, const double dt, const std::size_t timestep_id)
{
// Coupling iteration
if (_global_coupling_max_iterations != 0)
{
// Set the flag of the first iteration be true.
for (auto& conv_crit : _global_coupling_conv_crit)
{
conv_crit->preFirstIteration();
}
}
auto resetCouplingConvergenceCriteria = [&]()
{
for (auto& conv_crit : _global_coupling_conv_crit)
{
conv_crit->reset();
}
};
NumLib::NonlinearSolverStatus nonlinear_solver_status{false, -1};
bool coupling_iteration_converged = true;
bool local_coupling_iteration_converged = true;
for (int global_coupling_iteration = 0;
global_coupling_iteration < _global_coupling_max_iterations;
global_coupling_iteration++, resetCouplingConvergenceCriteria())
{
// TODO(wenqing): use process name
coupling_iteration_converged = true;
bool local_iteration_converged = true;
for (auto const& process_data : _per_process_data)
{
auto const process_id = process_data->process_id;
bool const isLocalCouplingProcess = ranges::contains(
_local_coupling_processes | ranges::views::values, process_id);
if (!local_coupling_iteration_converged && !isLocalCouplingProcess)
{
coupling_iteration_converged = false;
continue;
}
BaseLib::RunTime time_timestep_process;
time_timestep_process.start();
nonlinear_solver_status = solveOneTimeStepOneProcess(
_process_solutions, _process_solutions_prev, timestep_id, t, dt,
*process_data, _outputs);
process_data->nonlinear_solver_status = nonlinear_solver_status;
INFO(
"[time] Solving process #{:d} took {:g} s in time step #{:d} "
"coupling iteration #{:d}",
process_id, time_timestep_process.elapsed(), timestep_id,
global_coupling_iteration);
if (!nonlinear_solver_status.error_norms_met)
{
WARN(
"The nonlinear solver failed in time step #{:d} at t = "
"{:g} s for process #{:d}.",
timestep_id, t, process_id);
_last_step_rejected = true;
return nonlinear_solver_status;
}
// Check the convergence of the coupling iteration
auto& x = *_process_solutions[process_id];
auto& x_old = *_solutions_of_last_cpl_iteration[process_id];
if (global_coupling_iteration > 0)
{
MathLib::LinAlg::axpy(x_old, -1.0, x); // save dx to x_old
INFO(
"------- Checking convergence criterion for coupled "
"solution of process #{:d} -------",
process_id);
_global_coupling_conv_crit[process_id]->checkDeltaX(x_old, x);
coupling_iteration_converged =
coupling_iteration_converged &&
_global_coupling_conv_crit[process_id]->isSatisfied();
if (isLocalCouplingProcess)
{
local_iteration_converged =
local_iteration_converged &&
_global_coupling_conv_crit[process_id]->isSatisfied();
}
}
MathLib::LinAlg::copy(x, x_old);
} // end of for (auto& process_data : _per_process_data)
local_coupling_iteration_converged = local_iteration_converged;
if (local_coupling_iteration_converged &&
coupling_iteration_converged && global_coupling_iteration > 0)
{
break;
}
if (!nonlinear_solver_status.error_norms_met)
{
return nonlinear_solver_status;
}
}
if (!coupling_iteration_converged || !local_coupling_iteration_converged)
{
WARN(
"The coupling iterations reaches its maximum number in time step "
"#{:d} at t = {:g} s",
timestep_id, t);
}
{
for (auto const& process_data : _per_process_data)
{
auto& pcs = process_data->process;
int const process_id = process_data->process_id;
auto& ode_sys = *process_data->tdisc_ode_sys;
pcs.solveReactionEquation(_process_solutions,
_process_solutions_prev, t, dt, ode_sys,
process_id);
}
}
return nonlinear_solver_status;
}
template <typename OutputClassMember>
void TimeLoop::outputSolutions(unsigned timestep, const double t,
OutputClassMember output_class_member) const
{
for (auto const& process_data : _per_process_data)
{
// If nonlinear solver diverged, the solution has already been
// saved.
if (!process_data->nonlinear_solver_status.error_norms_met)
{
continue;
}
auto const process_id = process_data->process_id;
auto const& pcs = process_data->process;
for (auto const& output_object : _outputs)
{
(output_object.*output_class_member)(
pcs, process_id, timestep, t,
process_data->nonlinear_solver_status.number_iterations,
_process_solutions);
}
}
}
TimeLoop::~TimeLoop()
{
for (auto* x : _process_solutions)
{
NumLib::GlobalVectorProvider::provider.releaseVector(*x);
}
for (auto* x : _process_solutions_prev)
{
NumLib::GlobalVectorProvider::provider.releaseVector(*x);
}
for (auto* x : _solutions_of_last_cpl_iteration)
{
NumLib::GlobalVectorProvider::provider.releaseVector(*x);
}
}
void TimeLoop::preOutputInitialConditions(const double t) const
{
for (auto const& process_data : _per_process_data)
{
// If nonlinear solver diverged, the solution has already been
// saved.
if (!process_data->nonlinear_solver_status.error_norms_met)
{
continue;
}
auto const process_id = process_data->process_id;
auto& pcs = process_data->process;
// dummy value to handle the time derivative terms more or less
// correctly, i.e. to ignore them.
double const dt = 1;
process_data->time_disc->nextTimestep(t, dt);
pcs.preTimestep(_process_solutions, _start_time, dt, process_id);
pcs.preOutput(_start_time, dt, _process_solutions,
_process_solutions_prev, process_id);
// Update secondary variables, which might be uninitialized, before
// output.
pcs.computeSecondaryVariable(_start_time, dt, _process_solutions,
*_process_solutions_prev[process_id],
process_id);
}
}
} // namespace ProcessLib