Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
O
ogs-feliks
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Requirements
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Locked files
Build
Pipelines
Jobs
Pipeline schedules
Test cases
Artifacts
Deploy
Releases
Package registry
Container Registry
Model registry
Operate
Environments
Terraform modules
Monitor
Incidents
Service Desk
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Code review analytics
Issue analytics
Insights
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Feliks Kiszkurno
ogs-feliks
Commits
b0519a3e
Commit
b0519a3e
authored
2 years ago
by
Christoph Lehmann
Committed by
Dmitri Naumov
2 years ago
Browse files
Options
Downloads
Patches
Plain Diff
[T] Test reflection functionality
parent
69026cc7
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
Tests/ProcessLib/TestReflectIPData.cpp
+487
-0
487 additions, 0 deletions
Tests/ProcessLib/TestReflectIPData.cpp
with
487 additions
and
0 deletions
Tests/ProcessLib/TestReflectIPData.cpp
0 → 100644
+
487
−
0
View file @
b0519a3e
/**
* \file
* \copyright
* Copyright (c) 2012-2022, OpenGeoSys Community (http://www.opengeosys.org)
* Distributed under a Modified BSD License.
* See accompanying file LICENSE.txt or
* http://www.opengeosys.org/project/license
*
*/
#include
<gmock/gmock-matchers.h>
#include
<gtest/gtest.h>
#include
<numeric>
#include
<random>
#include
"ProcessLib/Reflection/ReflectionIPData.h"
template
<
int
Dim
>
struct
Level3
{
MathLib
::
KelvinVector
::
KelvinVectorType
<
Dim
>
kelvin3
;
Eigen
::
Vector
<
double
,
Dim
>
vector3
;
double
scalar3
;
static
auto
reflect
()
{
using
namespace
ProcessLib
::
Reflection
;
return
std
::
tuple
{
ReflectionData
{
"kelvin3"
,
&
Level3
::
kelvin3
},
ReflectionData
{
"vector3"
,
&
Level3
::
vector3
},
ReflectionData
{
"scalar3"
,
&
Level3
::
scalar3
}};
}
};
template
<
int
Dim
>
struct
Level3b
{
double
scalar3b
;
static
auto
reflect
()
{
using
namespace
ProcessLib
::
Reflection
;
return
std
::
tuple
{
ReflectionData
{
"scalar3b"
,
&
Level3b
::
scalar3b
}};
}
};
template
<
int
Dim
>
struct
Level2
{
Level3
<
Dim
>
level3
;
Level3b
<
Dim
>
level3b
;
static
auto
reflect
()
{
using
namespace
ProcessLib
::
Reflection
;
return
std
::
tuple
{
ReflectionData
{
&
Level2
::
level3
},
ReflectionData
{
&
Level2
::
level3b
}};
}
};
template
<
int
Dim
>
struct
Level2b
{
double
scalar2b
;
static
auto
reflect
()
{
using
namespace
ProcessLib
::
Reflection
;
return
std
::
tuple
{
ReflectionData
{
"scalar2b"
,
&
Level2b
::
scalar2b
}};
}
};
template
<
int
Dim
>
struct
Level1
{
MathLib
::
KelvinVector
::
KelvinVectorType
<
Dim
>
kelvin1
;
Eigen
::
Vector
<
double
,
Dim
>
vector1
;
double
scalar1
;
Level2
<
Dim
>
level2
;
Level2b
<
Dim
>
level2b
;
static
auto
reflect
()
{
using
namespace
ProcessLib
::
Reflection
;
return
std
::
tuple
{
ReflectionData
{
"kelvin1"
,
&
Level1
::
kelvin1
},
ReflectionData
{
"vector1"
,
&
Level1
::
vector1
},
ReflectionData
{
"scalar1"
,
&
Level1
::
scalar1
},
ReflectionData
{
&
Level1
::
level2
},
ReflectionData
{
&
Level1
::
level2b
}};
}
};
template
<
int
Dim
>
struct
Level1b
{
double
scalar1b
;
static
auto
reflect
()
{
using
namespace
ProcessLib
::
Reflection
;
return
std
::
tuple
{
ReflectionData
{
"scalar1b"
,
&
Level1b
::
scalar1b
}};
}
};
template
<
int
Dim
>
struct
LocAsmIF
{
explicit
LocAsmIF
(
unsigned
const
num_ips
)
:
ip_data_scalar
(
num_ips
),
ip_data_vector
(
num_ips
),
ip_data_kelvin
(
num_ips
),
ip_data_level1
(
num_ips
),
ip_data_level1b
(
num_ips
)
{
}
std
::
size_t
numIPs
()
const
{
return
ip_data_scalar
.
size
();
}
std
::
vector
<
double
>
ip_data_scalar
;
std
::
vector
<
Eigen
::
Vector
<
double
,
Dim
>>
ip_data_vector
;
std
::
vector
<
MathLib
::
KelvinVector
::
KelvinVectorType
<
Dim
>>
ip_data_kelvin
;
std
::
vector
<
Level1
<
Dim
>>
ip_data_level1
;
std
::
vector
<
Level1b
<
Dim
>>
ip_data_level1b
;
static
auto
reflect
()
{
using
namespace
ProcessLib
::
Reflection
;
return
std
::
tuple
{
ReflectionData
{
"scalar"
,
&
LocAsmIF
::
ip_data_scalar
},
ReflectionData
{
"vector"
,
&
LocAsmIF
::
ip_data_vector
},
ReflectionData
{
"kelvin"
,
&
LocAsmIF
::
ip_data_kelvin
},
ReflectionData
{
&
LocAsmIF
::
ip_data_level1
},
ReflectionData
{
&
LocAsmIF
::
ip_data_level1b
}};
}
};
template
<
int
dim
>
struct
NumCompAndFunction
{
unsigned
num_comp
;
std
::
function
<
std
::
vector
<
double
>
(
LocAsmIF
<
dim
>
const
&
)
>
function
;
};
// Prepares scalar IP data for the passed local assembler.
//
// The IP data are a sequence of double values starting at the passed start
// value and incremented by one for each integration point.
//
// The location of the prepared data is specified by the IP data accessor
// callback function.
//
// Returns the expected data for use in unit test checks.
template
<
int
dim
>
std
::
vector
<
double
>
initScalar
(
LocAsmIF
<
dim
>&
loc_asm
,
double
const
start_value
,
auto
const
ip_data_accessor
,
bool
const
for_read_test
)
{
auto
const
num_int_pts
=
loc_asm
.
numIPs
();
// init ip data in the local assembler
if
(
for_read_test
)
{
for
(
std
::
size_t
ip
=
0
;
ip
<
num_int_pts
;
++
ip
)
{
ip_data_accessor
(
loc_asm
,
ip
)
=
start_value
+
ip
;
}
}
else
{
for
(
std
::
size_t
ip
=
0
;
ip
<
num_int_pts
;
++
ip
)
{
ip_data_accessor
(
loc_asm
,
ip
)
=
std
::
numeric_limits
<
double
>::
quiet_NaN
();
}
}
// prepare reference data
std
::
vector
<
double
>
scalar_expected
(
num_int_pts
);
iota
(
begin
(
scalar_expected
),
end
(
scalar_expected
),
start_value
);
return
scalar_expected
;
}
// Prepares vector valued IP data for the passed local assembler.
//
// The IP data are a sequence of double values starting at the passed start
// value and incremented by one for each integration point and vector
// component.
//
// The location of the prepared data is specified by the IP data accessor
// callback function.
//
// Returns the expected data for use in unit test checks.
template
<
int
dim
>
std
::
vector
<
double
>
initVector
(
LocAsmIF
<
dim
>&
loc_asm
,
double
const
start_value
,
auto
const
ip_data_accessor
,
bool
const
for_read_test
)
{
auto
const
num_int_pts
=
loc_asm
.
numIPs
();
// init ip data in the local assembler
if
(
for_read_test
)
{
for
(
std
::
size_t
ip
=
0
;
ip
<
num_int_pts
;
++
ip
)
{
ip_data_accessor
(
loc_asm
,
ip
)
=
Eigen
::
Vector
<
double
,
dim
>::
LinSpaced
(
dim
,
ip
*
dim
+
start_value
,
ip
*
dim
+
start_value
-
1
+
dim
);
}
}
else
{
for
(
std
::
size_t
ip
=
0
;
ip
<
num_int_pts
;
++
ip
)
{
ip_data_accessor
(
loc_asm
,
ip
)
=
Eigen
::
Vector
<
double
,
dim
>::
Constant
(
std
::
numeric_limits
<
double
>::
quiet_NaN
());
}
}
// prepare reference data
std
::
vector
<
double
>
vector_expected
(
num_int_pts
*
dim
);
iota
(
begin
(
vector_expected
),
end
(
vector_expected
),
start_value
);
return
vector_expected
;
}
// Prepares Kelvin vector valued IP data for the passed local assembler.
//
// The IP data are a sequence of double values starting at the passed start
// value and incremented by one for each integration point and Kelvin vector
// component.
//
// The location of the prepared data is specified by the IP data accessor
// callback function.
//
// Returns the expected data for use in unit test checks.
template
<
int
dim
>
std
::
vector
<
double
>
initKelvin
(
LocAsmIF
<
dim
>&
loc_asm
,
double
const
start_value
,
auto
const
ip_data_accessor
,
bool
const
for_read_test
)
{
auto
constexpr
kv_size
=
MathLib
::
KelvinVector
::
kelvin_vector_dimensions
(
dim
);
auto
const
num_int_pts
=
loc_asm
.
numIPs
();
// init ip data in the local assembler
if
(
for_read_test
)
{
for
(
std
::
size_t
ip
=
0
;
ip
<
num_int_pts
;
++
ip
)
{
ip_data_accessor
(
loc_asm
,
ip
)
=
MathLib
::
KelvinVector
::
symmetricTensorToKelvinVector
(
Eigen
::
Vector
<
double
,
kv_size
>::
LinSpaced
(
kv_size
,
ip
*
kv_size
+
start_value
,
ip
*
kv_size
+
start_value
-
1
+
kv_size
));
}
}
else
{
for
(
std
::
size_t
ip
=
0
;
ip
<
num_int_pts
;
++
ip
)
{
ip_data_accessor
(
loc_asm
,
ip
)
=
Eigen
::
Vector
<
double
,
kv_size
>::
Constant
(
std
::
numeric_limits
<
double
>::
quiet_NaN
());
}
}
// prepare reference data
std
::
vector
<
double
>
vector_expected
(
num_int_pts
*
kv_size
);
iota
(
begin
(
vector_expected
),
end
(
vector_expected
),
start_value
);
return
vector_expected
;
}
template
<
int
dim
>
struct
ReferenceData
{
std
::
vector
<
double
>
scalar
;
std
::
vector
<
double
>
vector
;
std
::
vector
<
double
>
kelvin
;
std
::
vector
<
double
>
scalar1
;
std
::
vector
<
double
>
vector1
;
std
::
vector
<
double
>
kelvin1
;
std
::
vector
<
double
>
scalar3
;
std
::
vector
<
double
>
vector3
;
std
::
vector
<
double
>
kelvin3
;
std
::
vector
<
double
>
scalar1b
;
std
::
vector
<
double
>
scalar2b
;
std
::
vector
<
double
>
scalar3b
;
static
ReferenceData
<
dim
>
create
(
LocAsmIF
<
dim
>&
loc_asm
,
bool
const
for_read_test
)
{
std
::
random_device
ran_dev
;
std
::
mt19937
ran_gen
(
ran_dev
());
std
::
uniform_real_distribution
<>
ran_dist
(
1.0
,
2.0
);
auto
start_value
=
[
&
]()
{
return
ran_dist
(
ran_gen
);
};
ReferenceData
<
dim
>
ref
;
// level 0 - data preparation //////////////////////////////////////////
ref
.
scalar
=
initScalar
(
loc_asm
,
start_value
(),
[](
auto
&
loc_asm
,
unsigned
const
ip
)
->
auto
&
{
return
loc_asm
.
ip_data_scalar
[
ip
];
},
for_read_test
);
ref
.
vector
=
initVector
(
loc_asm
,
start_value
(),
[](
auto
&
loc_asm
,
unsigned
const
ip
)
->
auto
&
{
return
loc_asm
.
ip_data_vector
[
ip
];
},
for_read_test
);
ref
.
kelvin
=
initKelvin
(
loc_asm
,
start_value
(),
[](
auto
&
loc_asm
,
unsigned
const
ip
)
->
auto
&
{
return
loc_asm
.
ip_data_kelvin
[
ip
];
},
for_read_test
);
// level 1 - data preparation //////////////////////////////////////////
ref
.
scalar1
=
initScalar
(
loc_asm
,
start_value
(),
[](
auto
&
loc_asm
,
unsigned
const
ip
)
->
auto
&
{
return
loc_asm
.
ip_data_level1
[
ip
].
scalar1
;
},
for_read_test
);
ref
.
vector1
=
initVector
(
loc_asm
,
start_value
(),
[](
auto
&
loc_asm
,
unsigned
const
ip
)
->
auto
&
{
return
loc_asm
.
ip_data_level1
[
ip
].
vector1
;
},
for_read_test
);
ref
.
kelvin1
=
initKelvin
(
loc_asm
,
start_value
(),
[](
auto
&
loc_asm
,
unsigned
const
ip
)
->
auto
&
{
return
loc_asm
.
ip_data_level1
[
ip
].
kelvin1
;
},
for_read_test
);
// level 3 - data preparation //////////////////////////////////////////
ref
.
scalar3
=
initScalar
(
loc_asm
,
start_value
(),
[](
auto
&
loc_asm
,
unsigned
const
ip
)
->
auto
&
{
return
loc_asm
.
ip_data_level1
[
ip
].
level2
.
level3
.
scalar3
;
},
for_read_test
);
ref
.
vector3
=
initVector
(
loc_asm
,
start_value
(),
[](
auto
&
loc_asm
,
unsigned
const
ip
)
->
auto
&
{
return
loc_asm
.
ip_data_level1
[
ip
].
level2
.
level3
.
vector3
;
},
for_read_test
);
ref
.
kelvin3
=
initKelvin
(
loc_asm
,
start_value
(),
[](
auto
&
loc_asm
,
unsigned
const
ip
)
->
auto
&
{
return
loc_asm
.
ip_data_level1
[
ip
].
level2
.
level3
.
kelvin3
;
},
for_read_test
);
// b levels - data preparation /////////////////////////////////////////
// b levels test that the reflection implementation recurses on multiple
// members, not only on one.
ref
.
scalar1b
=
initScalar
(
loc_asm
,
start_value
(),
[](
auto
&
loc_asm
,
unsigned
const
ip
)
->
auto
&
{
return
loc_asm
.
ip_data_level1b
[
ip
].
scalar1b
;
},
for_read_test
);
ref
.
scalar2b
=
initScalar
(
loc_asm
,
start_value
(),
[](
auto
&
loc_asm
,
unsigned
const
ip
)
->
auto
&
{
return
loc_asm
.
ip_data_level1
[
ip
].
level2b
.
scalar2b
;
},
for_read_test
);
ref
.
scalar3b
=
initScalar
(
loc_asm
,
start_value
(),
[](
auto
&
loc_asm
,
unsigned
const
ip
)
->
auto
&
{
return
loc_asm
.
ip_data_level1
[
ip
].
level2
.
level3b
.
scalar3b
;
},
for_read_test
);
return
ref
;
}
};
template
<
class
Dim
>
struct
ProcessLib_ReflectIPData
:
::
testing
::
Test
{
static
constexpr
auto
dim
=
Dim
::
value
;
};
using
ProcessLib_ReflectIPData_TestCases
=
::
testing
::
Types
<
std
::
integral_constant
<
int
,
2
>
,
std
::
integral_constant
<
int
,
3
>>
;
TYPED_TEST_SUITE
(
ProcessLib_ReflectIPData
,
ProcessLib_ReflectIPData_TestCases
);
TYPED_TEST
(
ProcessLib_ReflectIPData
,
ReadTest
)
{
constexpr
int
dim
=
TypeParam
::
value
;
auto
constexpr
kv_size
=
MathLib
::
KelvinVector
::
kelvin_vector_dimensions
(
dim
);
using
LocAsm
=
LocAsmIF
<
dim
>
;
std
::
size_t
const
num_int_pts
=
8
;
LocAsm
loc_asm
(
num_int_pts
);
auto
const
ref
=
ReferenceData
<
dim
>::
create
(
loc_asm
,
true
);
// function under test /////////////////////////////////////////////////////
std
::
map
<
std
::
string
,
NumCompAndFunction
<
dim
>>
map_name_to_num_comp_and_function
;
ProcessLib
::
Reflection
::
forEachReflectedFlattenedIPDataAccessor
<
dim
,
LocAsm
>
(
LocAsm
::
reflect
(),
[
&
map_name_to_num_comp_and_function
](
std
::
string
const
&
name
,
unsigned
const
num_comp
,
auto
&&
double_vec_from_loc_asm
)
{
EXPECT_FALSE
(
map_name_to_num_comp_and_function
.
contains
(
name
));
map_name_to_num_comp_and_function
[
name
]
=
{
num_comp
,
std
::
move
(
double_vec_from_loc_asm
)};
});
// checks //////////////////////////////////////////////////////////////////
auto
check
=
[
&
map_name_to_num_comp_and_function
,
&
loc_asm
](
std
::
string
const
&
name
,
unsigned
const
num_comp_expected
,
std
::
vector
<
double
>
const
&
values_expected
)
{
auto
const
it
=
map_name_to_num_comp_and_function
.
find
(
name
);
ASSERT_NE
(
map_name_to_num_comp_and_function
.
end
(),
it
)
<<
"No accessor found for ip data with name '"
<<
name
<<
"'"
;
auto
const
&
[
num_comp
,
fct
]
=
it
->
second
;
EXPECT_EQ
(
num_comp_expected
,
num_comp
)
<<
"Number of components differs for ip data with name '"
<<
name
<<
"'"
;
EXPECT_THAT
(
fct
(
loc_asm
),
testing
::
Pointwise
(
testing
::
DoubleEq
(),
values_expected
))
<<
"Values differ for ip data with name '"
<<
name
<<
"'"
;
};
// level 0
check
(
"scalar"
,
1
,
ref
.
scalar
);
check
(
"vector"
,
dim
,
ref
.
vector
);
check
(
"kelvin"
,
kv_size
,
ref
.
kelvin
);
// level 1
check
(
"scalar1"
,
1
,
ref
.
scalar1
);
check
(
"vector1"
,
dim
,
ref
.
vector1
);
check
(
"kelvin1"
,
kv_size
,
ref
.
kelvin1
);
// level 3
check
(
"scalar3"
,
1
,
ref
.
scalar3
);
check
(
"vector3"
,
dim
,
ref
.
vector3
);
check
(
"kelvin3"
,
kv_size
,
ref
.
kelvin3
);
// b levels
check
(
"scalar1b"
,
1
,
ref
.
scalar1b
);
check
(
"scalar2b"
,
1
,
ref
.
scalar2b
);
check
(
"scalar3b"
,
1
,
ref
.
scalar3b
);
}
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment