Skip to content
Snippets Groups Projects
Commit 7388faf3 authored by Dmitri Naumov's avatar Dmitri Naumov
Browse files

[T] Manufactured solutions for T, axisymm. test

Both, the 2D in cylinder coordinates test and
the corresponding 3D wedge in cartesian coordinates
are updated. Verified against analytical solution
given in both project files for initial conditions.

New references are provided for numerical comparison.
parent a6478fc4
No related branches found
No related tags found
No related merge requests found
Showing with 165 additions and 202 deletions
...@@ -130,21 +130,20 @@ AddTest( ...@@ -130,21 +130,20 @@ AddTest(
REQUIREMENTS OGS_USE_MPI REQUIREMENTS OGS_USE_MPI
) )
# SQUARE 1x1 HEAT CONDUCTION TEST -- AXIALLY SYMMETRIC # SQUARE 1x1 HEAT CONDUCTION TEST -- AXIALLY SYMMETRIC
# test results are compared to 3D simulation on a wedge-shaped domain # The results were compared to an analytical solution (method of manufactured
# solutions). The vtkdiff comparison is against the numerical solution.
AddTest( AddTest(
NAME 2D_HeatConduction_axi NAME 2D_HeatConduction_axi
PATH Parabolic/T/2D_axially_symmetric PATH Parabolic/T/2D_axially_symmetric
EXECUTABLE ogs EXECUTABLE ogs
EXECUTABLE_ARGS square_1e2_axi.prj EXECUTABLE_ARGS square_1e2_axi.prj
TESTER vtkdiff TESTER vtkdiff
DIFF_DATA DIFF_DATA
wedge_1e2_axi_ang_0.02_t_2s_extracted_surface.vtu square_1e2_axi_ts_2_t_2.000000.vtu temperature temperature 1.7e-5 1e-5 square_1e2_axi_ts_10_t_1.000000.vtu square_1e2_axi_ts_10_t_1.000000.vtu temperature temperature 2e-15 0
wedge_1e2_axi_ang_0.02_t_2s_extracted_surface.vtu square_1e2_axi_ts_2_t_2.000000.vtu heat_flux heat_flux 1.7e-5 1e-5 square_1e2_axi_ts_10_t_1.000000.vtu square_1e2_axi_ts_10_t_1.000000.vtu heat_flux heat_flux 1e-14 0
REQUIREMENTS NOT OGS_USE_MPI REQUIREMENTS NOT OGS_USE_MPI
) )
# WEDGE 1x1 HEAT CONDUCTION TEST -- same setup as above test but in cartesian coordinates
# WEDGE 1x1 HEATCONDUCTION TEST -- computes reference results for the above
# 2D_HeatConduction_axi test
AddTest( AddTest(
NAME 2D_HeatConduction_wedge NAME 2D_HeatConduction_wedge
PATH Parabolic/T/2D_axially_symmetric PATH Parabolic/T/2D_axially_symmetric
...@@ -152,8 +151,8 @@ AddTest( ...@@ -152,8 +151,8 @@ AddTest(
EXECUTABLE_ARGS wedge_1e2_axi_ang_0.02.prj EXECUTABLE_ARGS wedge_1e2_axi_ang_0.02.prj
TESTER vtkdiff TESTER vtkdiff
DIFF_DATA DIFF_DATA
wedge_ang_0.02_ts_2_t_2.000000.vtu wedge_ang_0.02_ts_2_t_2.000000.vtu temperature temperature 1.7e-5 1e-5 wedge_ang_0.02_ts_10_t_1.000000.vtu wedge_ang_0.02_ts_10_t_1.000000.vtu temperature temperature 2e-14 0
wedge_ang_0.02_ts_2_t_2.000000.vtu wedge_ang_0.02_ts_2_t_2.000000.vtu heat_flux heat_flux 1.7e-5 1e-5 wedge_ang_0.02_ts_10_t_1.000000.vtu wedge_ang_0.02_ts_10_t_1.000000.vtu heat_flux heat_flux 1e-13 0
REQUIREMENTS NOT OGS_USE_MPI REQUIREMENTS NOT OGS_USE_MPI
) )
......
...@@ -32,7 +32,7 @@ ...@@ -32,7 +32,7 @@
<property> <property>
<name>density</name> <name>density</name>
<type>Constant</type> <type>Constant</type>
<value>2.0</value> <value>1</value>
</property> </property>
</properties> </properties>
</medium> </medium>
...@@ -44,19 +44,19 @@ ...@@ -44,19 +44,19 @@
<convergence_criterion> <convergence_criterion>
<type>DeltaX</type> <type>DeltaX</type>
<norm_type>NORM2</norm_type> <norm_type>NORM2</norm_type>
<abstol>1.e-6</abstol> <abstol>1e-14</abstol>
</convergence_criterion> </convergence_criterion>
<time_discretization> <time_discretization>
<type>BackwardEuler</type> <type>BackwardEuler</type>
</time_discretization> </time_discretization>
<time_stepping> <time_stepping>
<type>FixedTimeStepping</type> <type>FixedTimeStepping</type>
<t_initial> 0.0 </t_initial> <t_initial>0</t_initial>
<t_end> 2.0 </t_end> <t_end>1</t_end>
<timesteps> <timesteps>
<pair> <pair>
<repeat>1</repeat> <repeat>1</repeat>
<delta_t>1</delta_t> <delta_t>0.1</delta_t>
</pair> </pair>
</timesteps> </timesteps>
</time_stepping> </time_stepping>
...@@ -67,27 +67,27 @@ ...@@ -67,27 +67,27 @@
<prefix>square_1e2_axi</prefix> <prefix>square_1e2_axi</prefix>
<timesteps> <timesteps>
<pair> <pair>
<repeat> 1 </repeat> <repeat>1</repeat>
<each_steps> 2 </each_steps> <each_steps>10</each_steps>
</pair> </pair>
</timesteps> </timesteps>
<variables> <variables>
<variable> temperature </variable> <variable>temperature</variable>
<variable> heat_flux </variable> <variable>heat_flux</variable>
</variables> </variables>
<suffix>_ts_{:timestep}_t_{:time}</suffix> <suffix>_ts_{:timestep}_t_{:time}</suffix>
</output> </output>
</time_loop> </time_loop>
<parameters> <parameters>
<parameter> <parameter>
<name>T0</name> <name>solution</name>
<type>Constant</type> <type>Function</type>
<value>0</value> <expression>t * sin(2*pi*y) * x^2</expression>
</parameter> </parameter>
<parameter> <parameter>
<name>heat_flux_bottom</name> <name>dsolution_dy</name>
<type>Constant</type> <type>Function</type>
<value>1</value> <expression>-t * 2*pi*cos(2*pi*y) * x^2</expression>
</parameter> </parameter>
<parameter> <parameter>
<name>heat_transfer_coefficient</name> <name>heat_transfer_coefficient</name>
...@@ -96,8 +96,13 @@ ...@@ -96,8 +96,13 @@
</parameter> </parameter>
<parameter> <parameter>
<name>ambient_temperature</name> <name>ambient_temperature</name>
<type>Constant</type> <type>Function</type>
<value>0</value> <expression>3 * t * sin(2*pi*y)</expression>
</parameter>
<parameter>
<name>source_term</name>
<type>Function</type>
<expression>sin(2*pi*y) * ((1 + 4*pi^2*t)*x^2 - 4*t)</expression>
</parameter> </parameter>
</parameters> </parameters>
<process_variables> <process_variables>
...@@ -105,13 +110,13 @@ ...@@ -105,13 +110,13 @@
<name>temperature</name> <name>temperature</name>
<components>1</components> <components>1</components>
<order>1</order> <order>1</order>
<initial_condition>T0</initial_condition> <initial_condition>solution</initial_condition>
<boundary_conditions> <boundary_conditions>
<boundary_condition> <boundary_condition>
<geometrical_set>geometry</geometrical_set> <geometrical_set>geometry</geometrical_set>
<geometry>bottom</geometry> <geometry>bottom</geometry>
<type>Neumann</type> <type>Neumann</type>
<parameter>heat_flux_bottom</parameter> <parameter>dsolution_dy</parameter>
</boundary_condition> </boundary_condition>
<boundary_condition> <boundary_condition>
<geometrical_set>geometry</geometrical_set> <geometrical_set>geometry</geometrical_set>
...@@ -127,6 +132,13 @@ ...@@ -127,6 +132,13 @@
<u_0>ambient_temperature</u_0> <u_0>ambient_temperature</u_0>
</boundary_condition> </boundary_condition>
</boundary_conditions> </boundary_conditions>
<source_terms>
<source_term>
<mesh>square_1x1_quad_1e2</mesh>
<type>Volumetric</type>
<parameter>source_term</parameter>
</source_term>
</source_terms>
</process_variable> </process_variable>
</process_variables> </process_variables>
<nonlinear_solvers> <nonlinear_solvers>
......
<?xml version="1.0"?>
<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
<UnstructuredGrid>
<FieldData>
<DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="0" />
</FieldData>
<Piece NumberOfPoints="121" NumberOfCells="100" >
<PointData>
<DataArray type="Float64" Name="D1_left_bottom_N1_right" format="appended" RangeMin="1" RangeMax="1.6753144833" offset="84" />
<DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-2.7337143975" RangeMax="2.724425242" offset="1228" />
<DataArray type="Float64" Name="Linear_1_to_minus1" format="appended" RangeMin="-1" RangeMax="1" offset="2192" />
<DataArray type="UInt64" Name="bulk_node_ids" format="appended" RangeMin="0" RangeMax="120" offset="2320" />
<DataArray type="Float64" Name="heat_flux" NumberOfComponents="2" format="appended" RangeMin="0.0080858455" RangeMax="5.8788475555" offset="2632" />
<DataArray type="Float64" Name="temperature" format="appended" RangeMin="-0.95020414934" RangeMax="0.94129055242" offset="5176" />
</PointData>
<CellData>
<DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="6468" />
<DataArray type="UInt64" Name="bulk_element_ids" format="appended" RangeMin="0" RangeMax="99" offset="6532" />
</CellData>
<Points>
<DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="6812" />
</Points>
<Cells>
<DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="7348" />
<DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="8072" />
<DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="8380" />
</Cells>
</Piece>
</UnstructuredGrid>
<AppendedData encoding="base64">
_AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9Y1NDfRTU80NjZIM7EwNk8FADKlBO8=AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAANwMAAAAAAAA=eF610PlTzHEcx/Et0TA2u5hq1NaumhSbc0PD9lJpMe6jsCWsMXbGuoaoiKkcX3RJ2Y1ojCRZZUijY0RbznQ30SCWmSYZfb7H7laOrF+2v8D7l/dvj3k/3zzevyHg/ad92VuinDGZoMvtAD8tjEAZpJqg2U0geFeq35lNoHubvEVfR/BQmJpzaYjgcHhgefdSGn2xTb1L7tLwFNR2GJYxCBsnie3bz9rcTK3mpCyUYPGh1rpCiuCb3tPQ2kJQuvBBV5E3jc9G9okgicaXyraoHELDa6LE2T6OQU/GfLnzVBZNyc1lSSIO0bKGB9GxJptbH7ev2l5F4Hq/okn8nGD3xpjy0tk0nrOGP/mFNNLtfZ40+jNYNKunQv+CgVNW2eGgJBYhxWs2yXdx+OFyzxRPmaBqznRabjHbXMfNPu3VCQTSmoQzgdZOYfs79+0UDbmIu1Qgsjoj+YmKWgbyul88vdUTeQgft2/j8FLGyzqqNsGoHmEXmW/G1Um6j6y43+auMKipeusfHdYO6R7NoCEIrfQWttDo4Gd9OpHIIJgt81oYysI4UbphrrW38Dzl4+tsve+PpE0ZYIZGpXXrSrSgWJPLutgN2FyqXhzw9DZB3M7KzM6NNPaFlOtrnBg0zw6bNK2Vgf/evBUuRSw6ojsHv+o4XH1W1Rdw0wRRvuH+jTYzVrpHTPGT9qM7fLTLqpJhd0FMTbuqnOB0xIiX847Q0DY6GO2CGIx0e6VWjWfx+EtFi2iAhX/e7elCC4cLvz+lOAnNSFZHOmqXWxCZ0ZG8v6gfAZFnj0+ZOWhz15flhGTXEowe9d79ZioNlUxA39vKgAo/cy0ULFIVUWm9MzlszeB++gSaMFWz45w8yoxRHsEXHa5ZcMqPjzRrf0x3oZeQGnYrRQ4Rq14THAmULnW9QuNUcaZn50EG9fo5u/hKFt8Oxa8VrePgrmz0Xb3NBPG4nOBcyoy2IFQlNFgwNvuDa4lsABKKkzBVw67urq9jyhuCgpLi9RfzaNz57teUHs/gukdsAadiselWbo94C4cxi+YMKfaY8KPaaFFozTjm1Ws89tGCPS0v1lBhA5BCke7cMIi/xDur+w==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAsAIAAAAAAAA=eF5dkmtI02EUh5cmQVhUYlpoFysTVoiWkDE4y7xMbGI2MVJHDryETTTNG2putmW40GxiJm2gjpVOM1KGoZxRZAuzaYiXFI1ScqZltWwYjWrn/eT/yw/+Hx4envMqFNLKQLEAOfbIbcbvMuSa9036C1sxJ8RT0CTpx6jyiE2eGcMoSNg4n7l3Flf7uxa3FCziD3/tsHXIhurE+4f2TzmwRSrV62bcTIeFg2+HrHa0TBuqzVMS7JJyVdOjVZgzFj3B/1iD6s5cP92hJOTu+ekR19QCRRkKs9/nPogJUiWK6oYgXyANemaYBPmD6rAPoXNwRyjJDx5bht+WQv2gygZ3b1XKrldmY21qwm7LTjW+F/ouh7xuxGuyeGXqaho+V3oHZfU+gqWoy2Gn017CQJbuinJpHHSz+YHFL+ag8Y9mzZG8Aq4nr6ZnH7CDj7hd/K2ewy9jXBXjLjGuqIK4g4zrKiBuLeO2MW474w6EElfvGVXioubwNaxDB+twm3U41kUd4liHU6zDOdYhk3WoYx20rIM59tNmD5kNOP+/gGSec1eiaavK+pzrraSdaab/C420F7ppXXpo5Z3OrZCP8NwD0pMbOtNAT77wkHyhgnxhl8HpC+HkiyLyxSjyxRTyRQX5YjH54o57b6zuWTbMob6gob6wPdbZF2RyZ18wUl8cpbthO/VFPfXFNuqLq9QXp1eSjCVVHJOYcesYd47uBt3lxH3FuC50N3zHuBrGrWHcX4yryWt5cuMmx1TPOmhZh0LWoYjuBl7rOkSyDonrOrD3i+FrJktWrg0dDV+DWxtOwHiC79ls3zKIP1J6VDTfDI7j5ze0XuqD0oOGvAivYdCPcLd+6Z+BmB5r22PeIkh6z6TwOv69/4UJpa/RAaM+XgXaQTc+/6lIfXHeDn8B9V3dRQ==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAPgAAAAAAAAA=eF5jYACBD/azZoLAS3tjMHgM5d+0nwGmT9ozQAGUvx9C39xvAlG/H6p/P0TVBxg9au6ouaPm0sFcANgLnbk=AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAyAAAAAAAAAA=eF4txdNCAwAAAMDFZdtatu1aWrZt+/N76O7lAoF/UY52jGMd53gHneBEJznZKU51mtOd4UxnOds5znWe813gQhe52CUudZnLXeFKV7naNQ651nWud4Mb3eRmt7jVbW53hzvd5W73uNd97veABz3kYY941GMe94QnPeVpz3jWYc953gte9JIjXvaKV73mdW9401ve9o53ved9H/jQRz72iU995nNf+NJXvvaNb33nez/40U9+9otf/eZ3f/jTX/72j3/9BxAkHF0=AQAAAAAAAAAAgAAAAAAAAJAHAAAAAAAAUQcAAAAAAAA=eF49znkg1Akfx3EryZOMCjkzZVuhtrREyH6n9Igt51PODqlGcjbPImRSrogcUUrCRNaTmyRNvr9Uk6ZpcqfkaMqtkZkYYdjnedbzfP57/fV5fxg4ZNHYQ8cR5WmGlSAOGNC+q1o+AtnHFJdkiErwm6/eplO6oVjmn7+/Q5uLbaSfpUXtwehPO9SmJ+hDlZrcGwHUEDSIEQ1Va/DRfq/srw/KQ3FaMW1BJUaEXwMOryzSj8C5Aq5cBV+CcHkM2QdaIlF/PCQ9S3YZwdS7/7QvMAqZKQNsO1USEX08Vnx2UywGX7Q6Ni6rQFDCXcydI+PwgNm5ki9RyoSjJFlNYqgKEy0vb5tmngclxlm58EcEzrCeJLlMFeGK4jLrUj4XFTZly97rbcSnawe3OfM7UBzmy3pY2IXOpluGc4N6MP5zRWxa6BCO52QreUt+QuM3tU4KSkL8LZoefp4zgNVhipt6abNIa8vnxGaOILnpnJfiPUmCLLGr15rKR8fMdQlhR2WIasGKizy1CdTvVsl71EEigtKte7+TBBhm1zZRLKNAmM7rqHzuQqxq3KpQSInGPVt3BKxksZHCc/NKHc/F1lGPg+mvOxGOJefURtYgT9hR8Y8AHnqGukXkt7LQjeFftCZmCDXf5VWWR7di4EaheVIOH/vahVSyoBvDtjistzwiQCtvYt+kSz+e3u6VVuc3iWWSzLamj2MYHI2G+vRp1DPW0SVeCnBKVbZAKWUWnb0CX2s8EGHPg4e1oapilPnWW0szESNVUML0eoGYFsqxEFHvoLaT3BjnARtJyyxrDJoTkVZzw8j4aSd6UPcvuKYVgGWyY4+vNw/XNfd8v6b7BBq862RE9CEsL5zcy3/RBCUacjLSN/g41qcToGPbBctsPWxz3QSofv3NQITiZ3jke3P4kvcklhpu739ePAqkgUpH19BpTHat/NlohwCSy56tykiYxRol2rOZrSJgl+jUFCiIUTqk4saK+jk4Lc1/YlJUhbvuHF+P68twr+iMJjOOwAL26+Wf2A6gdJceRM/nYmvYL4OqHxqgh5PnLvWyA++3Jh28+rQT7Dl3PJrse/B68801rQqDsOWEZrj0OA83V9y8anhKAC8yf8h4XzOAX6ZYNnTODLTampTHnh9BbYZTYra7JEV7ddNzfWs+aphXZPkqylAC52RNYPkEjmQpz0+lkChak6YkJ/EElqdtfvJhaDUl8nWf8KKDMS5dZSuRFVmBHtGCCzstLNBTiSRSjo6ExPjyNc/8HbBkhrPxnxsboZxVKxNFccUEoyP17VK90LhnYl+iswd+np7wWfNwDFxOS6hFfTiOl257d813TsGOlqCsNAMvrP5Yc7ImS4Jy6WOLeMH9NCrnk1U2M6UpndL9x3r2++Ge2mkvMleOkqJeP3xpKgDJz6jz3/7TtxCnVZAViLFHv+xXOKFMmco9s1MytAoKs6XqHomLcVD2YryUBwE1pd0HtNyCoLCfEzd6iAti0vH0qqNPIanQfcg/owPaG9/5qi15B5SQfNuDpB7YcSfFxv+XQajTfVXGZPHANFx1ShgsgIS6IsXOuAEo33bSoeT9DFBluS5rfxuBex0r6k94SlJ86IMclhwfLuSs0WlXk6GorKrVezP8FRhv3cf510gU0sD3k7e6JkBynd2W66OrKaW04gulqQiaenkZmbPZyLPwtOy9zIYyhjo1YWkIpuUFkC1udcKvcTrLbYkiUIwSan+0+XdP3U8J6noN0LAuTHfJoSFI2vBMydSiGRDJLfIBfNDrNghe/bwLDEIqmWa7BVCf/7vwlc1n6P3x5TzXZhIS/b75FH8aBX95P6Gf2zS8Cp7/YOQogNFjNzc8ODUL/GDPdhMrEfirDsp7fp2Dcd6ClEnbHJQ8oZuuvYbw7drZc+pz/jDjSGheTmaD4+5mXa5ROtLrUytv5HSC59tgn2DrKsw87Hfbzp4HNt3HOzfYPkfGI97C5qNDwDUpfDn6sgWNmIczR2l8GBm3C7hq3o0sjQZGxB4BXNvHvZr5Qz+q6N1LPmo/CQ6HV1EfJ42h80LX0r2Hp8FYm3y1MU+AZhEPHZt9ZoH3N+psY6oIpesNn98UzkGi/P4Fa2UxaljNVcfEVgHrnaWkrFwOvJ2sZhj4ENB8wP3hdflc1Lpyf5PZGS40hITUD5ew0PDiWrJhfgdo6D4uSsx7j0aUDruY9T0QbyZLYs8O4spVP/3o18ID5T88/vX9rQCV4mfZURkD0Bdu2OpmPIs8Sy2fAtcROOOZetfsiiRx6BTZaRmZD+KWgG3dFjJE6lm/2u3Cr6DueV63l0kipEnqMh79E9BkRf3Cm1tNSPx3NKbXdcfM+Kp8+MsnmC3TBc0XXBn4lwOZbX8/2Btd9Or/vq09Wbn9SN+if2feaxU4ZVz5sugUpl/VyQvdIFr0LSbN3G6wiyOx+Hd25+7b+nfLR6QXXbhzwKPvVul3uUWnM011c3XUxP/r+4NJjN3VowUrE38CTDPl4A==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAApgMAAAAAAAA=eF51ym1Q0wUcwPFM6QY3Qjcw5UFuglOcnvagHST81JAwGAQEcjpUHgwMdCCPG7TjKWETdDRgh8XUjYeFpMBuMoru51g7wYTJAP9jMVdMZEDtKgjBOFYvesVdrz4vvt+M+FMHYxdFeDjDnKrZL8KmQpM9vvQLHHx+71ynrQZ5owvN5NP/2vbeMEMjxOj81rsH3YQ4PBBQQf3yKqr7fwK/wSr8vXrzWUW3AD+K2Om86XQl+s+7Gwy76nAfr2zoWYoAKcY3WZZLebClbe6maocUyLrQF9mogOA0ZnSh6j60u/eOG10HwKhEZ4I7DDFJl6882UuA5ww5VS0zQfNSIpVzcRLmPdj62qo6nNb7MLK/KsGppHLz3PE6UMhLCzyaOsGs1MkUaWqQHnolv4f9CCLL784yFkYhfKOafWdmAioIZv1ZsgUEPnuLZw9bwdPNu1lHscE8o743cbsIBVr5i587OOhVM8UPbxTDp/pPIqPe6QKN75RL6h01SAShobauR2Bs/MH3vOsYxHkFDSSQTPCa683eYXcLhG1g3oiOsAJ5Z2yCs7cN2LIAklh0BVekDOOGrnwMMa7uWIziw/O8nr4T1c2Q1NXaKk9RwpEi/odfl6mBtqjynCcGwLH/9jdaYhgarrfcSvqcAMWBt5LJf5mAM9WUKhZNAiv/115bDxe5E/byG7VcDEoNGWkJ4uIDUr5XkZKDHZonlAt/F2CRB+U4jVqAyd6BwuXVPKTHXPbfo87FdpJcs4eVgy0O/BW3kUtIyyg0z/lloYReszEongHxBSmyI0weVn9fuMxfaUARtS1gldqOUvnrDqFCFdrdez74zkmDTJeEvgrmjzjbFGMurtRjBjIlut0GtAR2iNdffYonFbKQj8cnsTOqxJ+QZwPbvlQ3Ps7DaUN5t/iBFDOCvcNHGpX4LN3J+XqcBtfHZb1UhQ1hZuTS/R5iDIWBtVxQm/C2zm5OyrLggu9E1DmJFS8KAyspaTYsDdavO0QUwOMT2lNVXRwcWdaufusrxc20FJpThBIrV0iG0X0aNI4Pvs+iDyE9WXh0UjuGVY3WzDMdJkw/Sld/dt6C90rsv20RW7EsJ9MtPdGGulx5yK1rmaCpdZx5lXUBix02bX2XVo86gjYXu78N/3C5diy4uRsD/bat4zX04eN+nuHMLw8xN6x628lYPe6e3vrGny8JPJD7do4m8SkO+Xhv36WdRCeBJNyf87DXcY2k/1zbSf/zr/UfJlP76Q==AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAArwAAAAAAAAA=eF4txdciAgAAAMCQWSFbJCuzsjNDiuyMyo7y///gwd3LBQL/WtzqNgfd7g53usvd7nHIYUfc6z73O+oBD3rIwx7xqMc87pgnPOm4p5zwtGc86znPO+kFL3rJy17xqlNOO+M1r3vDm97ytnec9a73vO8DH/rIOR/7xKfO+8wFF33uC5d86Stf+8a3vvO9y37wo5/87IqrrvnFr37zuz/86S/X/e0fN9z0r/8AXBwTVw==AQAAAAAAAAAAgAAAAAAAAFgLAAAAAAAAcAEAAAAAAAA=eF511sFpQzEQhGH35ALcTXpKOnEJguTkk24CQUCQg0oIthjM7r+zJ78vy2y8fk/25VLX1+ez7rfaG/z6qofp7/BTw+RM+Merfk3+gv98P+vPzN3G+b51XXuDaw91f4efGiZnwrWHOn/BtYd67jbOzznuIXuDxz3k/g4/NUzOhMc95PwFj3vIc7dx3tfaQ+0Nruu6v8NPDZMz4dpDnb/g2kM9dxvncxzvh+wNrty6v8NPDZMz4fF+yPkLHu+HPHcbV42Ur+cne4PH/eb+Do/XOWfC4zmZ8xc8npN57jbOczo+F9kbXHuo+zv81DA5Ex6fi5y/4PG5yHO3cX4vaQ+1N/jJfZj+Dj81TM6E67rOX3DtoZ67jfN7OJ4P2Rtce6j7O/zUMDkTrv+7zl/weD7kuds4f3doD7U3uPZQ93f4qWFyJlx7qPMXXNf13G38/Xe9iudk9gbXHur+Dj81TM6Ex/s45y94fJ957ob/A7JFAhg=AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA/QEAAAAAAAA=eF5d0EXXEGQABWFaGgWluwSV7v7oEAVJizBolI6fz4L32czd3HPmzGomTfq8yePnjp8TPmX8vHj41PHz4+HTxi+Ih08f/2U8fMb4r+LhX4xfGA+fOX5RPHzW+K/j4bPHfxNPJz2WjF8crsfSeLgey+LheiyPh+uxIh6ux8p4uB6r4uF6rI6H67EmHq7b2ng66bF+/LpwPTbEw/XYGA/XY1M8XI/N8XA9vo2H67ElHq7H1ni4Ht/Fw9eO/z6eTnpsG/9DuB7b4+F67IiH67EzHq7Hrni4Hrvj4XrsiYfrsTcerse+eLhu++PppMfB8QfC9TgUD9fjcDxcjyPxcD2OxsP1OBYP1+N4PFyPE/FwPSbi4bqdjKeTHqfHnwrX40w8XI+z8XA9zsXD9TgfD9fjQjxcj4vxcD0uxcMnxv8YD9ftcjyd9Ph5/E/helyJh+txNR6uxy/xcD2uxcP1uB4P1+NGPFyPm/FwPW7Fw3W7HU8nPX4b/2u4Hr/Hw/X4Ix6ux5/xcD3uxMP1uBsP1+NePFyP+/FwPf6Kh+v2dzyd9Ph3/D/hejyIh+vxMB6ux6N4uB6P4+F6PImH6/E0Hn5//LN4uB7P4+G6/RdPJz1ejP8/XI+X8XA9XsXD9XgdD9fjTTxcj7fxcD3excP1eB8P1+NDPFy3j/E+AWsoXcE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxgAAAAAAAAA=eF4txRF0QgEAAMB6LwiCIAiCIAiCIPgQBEEQBEEQBEEQBEEQBEEQBINBEARBEARBMBgEQRAMBoNBEARBEATdyUVCb1HHHHfCSaecdsZZ55x3wYGLLrnsiquuue6Gm2657Y677rnvgYceeeyJp575w5+ee+GlV15746133vvL3z746JPP/vGv//zvi6+++e6Hnw6F30UcdcxxJ5x0ymlnnHXOeRccuOiSy6646prrbrjpltvuuOue+x546JHHnnjqmV/7BioOAQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eF7j5KQ9AACx7gOF
</AppendedData>
</VTKFile>
...@@ -32,7 +32,7 @@ ...@@ -32,7 +32,7 @@
<property> <property>
<name>density</name> <name>density</name>
<type>Constant</type> <type>Constant</type>
<value>2.0</value> <value>1</value>
</property> </property>
</properties> </properties>
</medium> </medium>
...@@ -44,19 +44,19 @@ ...@@ -44,19 +44,19 @@
<convergence_criterion> <convergence_criterion>
<type>DeltaX</type> <type>DeltaX</type>
<norm_type>NORM2</norm_type> <norm_type>NORM2</norm_type>
<abstol>1.e-6</abstol> <abstol>1e-13</abstol>
</convergence_criterion> </convergence_criterion>
<time_discretization> <time_discretization>
<type>BackwardEuler</type> <type>BackwardEuler</type>
</time_discretization> </time_discretization>
<time_stepping> <time_stepping>
<type>FixedTimeStepping</type> <type>FixedTimeStepping</type>
<t_initial> 0.0 </t_initial> <t_initial>0</t_initial>
<t_end> 2.0 </t_end> <t_end>1</t_end>
<timesteps> <timesteps>
<pair> <pair>
<repeat>1</repeat> <repeat>1</repeat>
<delta_t>1</delta_t> <delta_t>0.1</delta_t>
</pair> </pair>
</timesteps> </timesteps>
</time_stepping> </time_stepping>
...@@ -67,27 +67,27 @@ ...@@ -67,27 +67,27 @@
<prefix>wedge_ang_0.02</prefix> <prefix>wedge_ang_0.02</prefix>
<timesteps> <timesteps>
<pair> <pair>
<repeat> 1 </repeat> <repeat>1</repeat>
<each_steps> 2 </each_steps> <each_steps>10</each_steps>
</pair> </pair>
</timesteps> </timesteps>
<variables> <variables>
<variable> temperature </variable> <variable>temperature</variable>
<variable> heat_flux </variable> <variable>heat_flux</variable>
</variables> </variables>
<suffix>_ts_{:timestep}_t_{:time}</suffix> <suffix>_ts_{:timestep}_t_{:time}</suffix>
</output> </output>
</time_loop> </time_loop>
<parameters> <parameters>
<parameter> <parameter>
<name>T0</name> <name>solution</name>
<type>Constant</type> <type>Function</type>
<value>0</value> <expression>t * sin(2*pi*z) * (x^2+y^2)</expression>
</parameter> </parameter>
<parameter> <parameter>
<name>heat_flux_bottom</name> <name>dsolution_dy</name>
<type>Constant</type> <type>Function</type>
<value>1</value> <expression>-t * 2*pi*cos(2*pi*z) * (x^2+y^2)</expression>
</parameter> </parameter>
<parameter> <parameter>
<name>heat_transfer_coefficient</name> <name>heat_transfer_coefficient</name>
...@@ -96,8 +96,13 @@ ...@@ -96,8 +96,13 @@
</parameter> </parameter>
<parameter> <parameter>
<name>ambient_temperature</name> <name>ambient_temperature</name>
<type>Constant</type> <type>Function</type>
<value>0</value> <expression>3 * t * sin(2*pi*z)</expression>
</parameter>
<parameter>
<name>source_term</name>
<type>Function</type>
<expression>sin(2*pi*z) * ((1 + 4*pi^2*t)*(x^2+y^2) - 4*t)</expression>
</parameter> </parameter>
</parameters> </parameters>
<process_variables> <process_variables>
...@@ -105,13 +110,13 @@ ...@@ -105,13 +110,13 @@
<name>temperature</name> <name>temperature</name>
<components>1</components> <components>1</components>
<order>1</order> <order>1</order>
<initial_condition>T0</initial_condition> <initial_condition>solution</initial_condition>
<boundary_conditions> <boundary_conditions>
<boundary_condition> <boundary_condition>
<geometrical_set>geometry</geometrical_set> <geometrical_set>geometry</geometrical_set>
<geometry>bottom</geometry> <geometry>bottom</geometry>
<type>Neumann</type> <type>Neumann</type>
<parameter>heat_flux_bottom</parameter> <parameter>dsolution_dy</parameter>
</boundary_condition> </boundary_condition>
<boundary_condition> <boundary_condition>
<geometrical_set>geometry</geometrical_set> <geometrical_set>geometry</geometrical_set>
...@@ -127,6 +132,13 @@ ...@@ -127,6 +132,13 @@
<u_0>ambient_temperature</u_0> <u_0>ambient_temperature</u_0>
</boundary_condition> </boundary_condition>
</boundary_conditions> </boundary_conditions>
<source_terms>
<source_term>
<mesh>wedge-1e2-ang-0.02</mesh>
<type>Volumetric</type>
<parameter>source_term</parameter>
</source_term>
</source_terms>
</process_variable> </process_variable>
</process_variables> </process_variables>
<nonlinear_solvers> <nonlinear_solvers>
......
<?xml version="1.0"?>
<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
<UnstructuredGrid>
<FieldData>
<DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="0" >
</DataArray>
</FieldData>
<Piece NumberOfPoints="121" NumberOfCells="100" >
<PointData>
<DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-0.00043368846559" RangeMax="0.0008999400012" offset="92" >
</DataArray>
<DataArray type="Float64" Name="heat_flux" NumberOfComponents="3" format="appended" RangeMin="0.34933725275" RangeMax="1.0019098568" offset="1036" >
<InformationKey name="L2_NORM_RANGE" location="vtkDataArray" length="2">
<Value index="0">
0.34933725275
</Value>
<Value index="1">
1.0019098568
</Value>
</InformationKey>
<InformationKey name="L2_NORM_FINITE_RANGE" location="vtkDataArray" length="2">
<Value index="0">
0.34933725275
</Value>
<Value index="1">
1.0019098568
</Value>
</InformationKey>
</DataArray>
<DataArray type="Float64" Name="temperature" format="appended" RangeMin="0" RangeMax="0.69421802207" offset="4728" >
</DataArray>
<DataArray type="Int64" IdType="1" Name="vtkOriginalPointIds" format="appended" RangeMin="0" RangeMax="220" offset="5988" />
</PointData>
<CellData>
<DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="6324" >
</DataArray>
<DataArray type="Int64" IdType="1" Name="vtkOriginalCellIds" format="appended" RangeMin="1" RangeMax="208" offset="6388" />
</CellData>
<Points>
<DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="6692" >
<InformationKey name="L2_NORM_FINITE_RANGE" location="vtkDataArray" length="2">
<Value index="0">
0
</Value>
<Value index="1">
1.4142135624
</Value>
</InformationKey>
<InformationKey name="L2_NORM_RANGE" location="vtkDataArray" length="2">
<Value index="0">
0
</Value>
<Value index="1">
1.4142135624
</Value>
</InformationKey>
</DataArray>
</Points>
<Cells>
<DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="7236" />
<DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="7936" />
<DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="8244" />
</Cells>
</Piece>
</UnstructuredGrid>
<AppendedData encoding="base64">
_AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eNoz0zPRM9Y1NddNtzC2NDZJMkhNSdFLySwqqQQAUucHSw==AQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAoQIAAAAAAAA=eNotkl1Ik1EYx18/WpJYYUalc4ktbLvYyOmCfJlDZclIMaL8yracsT4UV4rpbDiFthIvhDL8GDRkzNmFrWk2t7GzotZEREXN5U2r0RBvJPuCJpnv83gu3h//8zznf/7nnFdLFRSY22LyqZ2hrxHT7Iu1Ko04ldH6Ys4qTcEYztv5SOcNa6hzTgInmgOog1E3U+8Pf0XN5TL05bEXUbPjPAz8LS+BVCYF883+F1i/ugd1cBT16l/Gj+LLh+j9ovgbY+pNr8p273TW/USydES1k48PeeMvTUF/0dhboD7JCP5B1jhojdgJWiroBpYqsZ+abgCd8UdB89KKDrmz08jKhW75kk0EvrRsGepO1wIwsOUFHv2FfqZ/AeDBVBf6THYBt4ptQH1TnafgelZsJJFL0jlM3rPgS9W8xpxaE1A5a4X+BJcDdMZTPdDmtgClPe1QVxrQ3/dFTR/raImhk/lkbT1dwqqVgm9w3Y79+4bwfBV1yLIRzOd4DjQn4b6hyhGsf7gN7FUYPbzCaUGuUUh+Sph7KATfBJYd34tVj/eo7UVWjGKu2F2fUCZSehNznurD/d60eubDkfPezGwSN/D78vCGDHx9VX70dQzDOp+wD9eLhvD+GnV4nm2ctwsG8RxePdLVQieHV4IVKTmkM8r8r3LMuz2D66sHMCfnGfrc6sf9ZNeAmhQzvgPfgPOfruB5Su7Q7xTrT7qNuWS5eq5RoivBvLJXUA91WrCv3Yrr1bv/a5UWtQ7zmb8/xPmPCvR3Zngsn2dNcw1iEmnzeEvzhPmbx33+w/U04Z3bKBvsO0MeGVpDE00i0jX1YF5tF5Jxufe9RM4j3xatS+WGE6Scw//R084m5o4DM5OmZMJ1RSv7VbHk8cJe892OLPIfkEYYdg==AQAAAAAAAAAAgAAAAAAAAFgLAAAAAAAAsAoAAAAAAAA=eNot1Xc4FYobB3AKqYxslRDlmhWVjMPXKWRvGWWPgwo3q6K6RbqR1aBuMjKzOUic7I4Ssknh2Ps0ftJN5NdN7z/v87z/vZ/nHYt00Vyl4DhoCESdvuAogc7zrPKbauloKfNlDTgUB/Wj5anjzBJQEXK9GX99AaUSG4VC7R4hpiAI9q8VIPH1M0/Hczost3sfdJlIRIJWlH3IZQUQTxm2aVxdQMWS78Qrt1hIHn9JsFndA0HXTpKn6Bxer7iVjIY/hFm2vKJkkjw+ep7s5Bacg7ujq2WyWjSimllLWm3FkXyHy4J3bBqfCyJvGtg9QOMx+7i3qgfwZTBph0XfNPL4bnAFzUWAt11Zp1BlN/iF3WYS308i+1miu2ZMPGr5edLiabIwr8rg29c2Ce+1koDDLDeQt6xf1Xt+F9TlNO76Ck7gcleqk8TxO5ALpfUczJfEYMg1Hy7WCczMFZSMV12Dd2r108/LArjlGrq1KmkMb7wkHC9ax0CLSdOol3MPsvLDdHiixnCbv3A+yzUEk573dQVluVG5WPrnR/9RKAnnXamn3ABdynxjqLMwWPgNm645j+KVyJVV4S1+SNSfUuFzYEUm4a86n6QRZCZTfO50XEHj6+YMKzteKBpsk0yIHIG91aVvQoIucFcONfvh+696VU1tvsiuEXxXS8t1n/SBrLZDba4XE1I1GqL5toyA4b8w8Sf8lyTsqJRzLv2lC59o6/XaFMp/ych4hSI0OZTQM0RDv1TI00f+uWgci+8PvE0Eu+QVhesVdIQ1u9LqGXPhHPTQfVGHiE4FgfCRwAVE9yZqmpCfgOwjnzN5TgPPTEJLJJnm8ICTtMSZkQWS3IYEOU113NUlO1lVTUPI2WTDu9V0rOUW5zYMqUD2zd6KudxJWF8QJIVOpYKNnEwWmFMEy0ikrfXIOC7edI6ncT7C1+PCuwseKMCLJWDU32UMouJlzT++3UOfqHV86G5Z6HTzFMofGUUiPdLJ5WwUDvB1BN3oEYPjfjlhF4cR6LlVlL8OvgSJHeCtHeLGRe2R8JDB3w4v8385kHa9JXwWujolWkIDT9zaa97BUvCbG/S9KdXDjy3bngUU0uHQwBDz57VSPFenljZr6IGbJPJVxm0BEc4VZf7BZOh3zLBIftSBZXRV2vHRWWwMEdY7SSvGoffUMPqINtL5L1JXIqfh3jVXHp9eCL+ppZJbGpqY7igysDw3iQQJw5vFUzkQV91rpqVEBGvktsaSlHHcYSdvO0bNwH57XXb9YVVIvfFgPS08BqZoX52/z6aAlxLedHTTYZyVFzV59uHn/HhXKkx+uYePJclWWkKyGOaRfFXNPwKBioHVz8vXYchoIksRE8LINjVGx7u/HaSLfjmYGN4jXGdi8pz0oCHFoObdRDkFgaU1xCpHMyT6w+V9Kh2uyUWKNQoUOPJyz0uwmYHB0Cg0X28BC+J+AhFllYhXOdkqI2iKtk1TMxOFs7h/K4NlkVSBWEHPmAw1Y/gseykqaP+chwcGLflXyiD8xTPpU5g+dnQGkk4KT+JbxP+6luVL0HRotcRT7ziyLCRF/Y6NY7OYcHSPRT74yqpJ7S+OYpxAMuqsGoWt1xlGMkcm+l/I8zMRCJgJTCoMiRjB4eS9+aNej8DBqUJa6FKAddwjt8AiGvZRY4nypCgYJTmaxHaIgclP37JV7rdD+7qDhnECRfn4bWPdDTRksjr4+FHrMf3+4YlAVmtsd2zhPBNNR2njKxlPj3por7Ro8MdagWn03mWGvQv4oyCS4/nJOoDzyQtZpRNYkqlUo3vMgk0vpNolvAbLiZHlSnIWMNXiUyNOTMHIboXmfbcK6tlO812ZpiiNs5WIz52A7C7VO6LyT7G950gZtdAQDAMeLluoY1C2vn87OKEEtQwbdKxajuPCHsYhfuVRKLyRrTTtzwXPdFeddicRuiFZbA3MIzCf5ZIODn2MrLjCj5SSI9COFbD3laGBX3wtbun8bVjOchlpZ/wBalNWH5fZ8LqDbPEvB2uhOkLZCv25zfch8Fy6t1w41oRud1Oi1V17pHb6E/vO0VFL3cxy5lQTvi5V/ZCfssPpwO1zax/mIX9TP3J4+AW+Kwwm8zCcwqBII/99lll8DB84Yp3fAMVP+juYDtgg9p+ptnanKXzmMygOYqtDzkd399JOS4TncWwg80zAYn/WALs3BVRin5iQghk2d58s7xYfQ4dNzoHVx+VQTA8w7PlmAKXMx1YH74ygdiXQvH6wCGcyZgNm47UQFTH/odGBBlYvHflum0xMai46708kYPYi3+qf7MOYWtn6qZIYDw49n+ATl2RRnW2hJbN1aN2hZd3h/n4yQTRnvMWvbBAXpIhZTsxtSG/SG25TdEF9WDhfsx4dis2SfiZKrfCSqYuIITvjX9cGZ7b0eUgbH3pwautr+OQpuG03dgLjqX16UpdmsK/9HFPQchO221epXim2R5jHPW1S0SQeNwfV8F5thBM1X5ENthjtqehiNBpHp60akXuuFsvXj9YtZlmiXkRml4HVKJZz8me4qyrB7Mr/oHynKSSFd55lb6KBOUidma+NjC8CYmNzNrqw8TE0Z9w3DM0Uhqfpe3MQV3xKkIeigZ27nXsjQwexhyntm8z3B9CQNTEeTzmAiMrLpn3h79cdaHm/HP5aLCKIXWp1EDv4Hmy7BZ37BjtxXqNPmiThAaY0jywjNjr2SBt81VbsxKqPwfyMMQmtiM+6LD8Ph5wmK+bgdjBzrfaFC7rBLpW/avfTaWzwdrO/+k8LLlnmaMYYOSPwwvl+9ZoJTGxjljrG9RL+tKbq/DZ7yBoTO94aj6FT3FMyIaUBvNXZhUUiNqiIJ499sh2ByhJplbOuGu0IjlooMMcrwtIb5/RhuLf65xRnlUPHkcD3bs0AXtWGlAuWg7DLNXXe0ZKPQFVZLgnuY3BkdwxOfvYOYVHUpjuRj3BLeaHt7bQCiu76FwRSB37fh5JfDgzEvymZukWGHIEDEMn7xnfVvx/Zwiue5YY+eBFVmaOctoBvXYfbDxX3Qiz8iywr21kUSj20Szs3hwnHHs+DpV3YrtrX1azkCf/HuyUy/56CinHtRpkn7bBP+9F/39wN1/o+ux4OGkfK2EDebMxr9FvmLXxIc4JLg7L2Dc5RpNdwuPArUSFWcD7lh+8pGA3Em+36udcigwXqGlp18M5Ib3PZeQJNg0lFVaRBvCSfsWAzfgYJL4a0SgUTaGSppWgceYeE+DWaSHwRwqWIQUqqWrh1gphtXfL2575P53B4pYBEesravuEwxK4fYrZo7V93cFz/mwwsXoTw3O7Jwqv9MFEedHcbfoeDBhc123r/xJvmdKcNuvOwJxd3L0m/hUdfhe/jnb5Q3BHWYdUxA7Pvfykese1BM8hHVy1OY2XoXbcQeQLZGf/EdHR3gLWsIkmqyx1DVxvbRF6NIkA3pqruWCsuEPysRyudcbFvz7TuTRooc1H7KoKaYMz+XEx8iz0EpE1jo2MHcV1klweXXD2cN13bK6pphcnNEeQd7weQpRTg73G7EtlX2goKGU0RcljxnlP/z76KfwRJuxSjWVPgSQFRG8sfUlWF/frQz7ooLC2fimdU/dx8RkWsFRwqp6f0rjukFP5y0FnoIPhILz2OONmL/wNo4DBhAQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAAkAMAAAAAAAA=eNpdzP1T0wUAB2AWBciIZmccBjveDhCJi8JYCPIJ2FI51M2A4s3zBYiXUCDjTjjvMkMgTHBkk5zHDeS9Ox3jfYcIWxuOhWOMARuO7YtjB/g2PF/WAOun1fX8AQ+T2djrRFtCQ0fiuMpvERnchCqXoCXEUM/t3uq2CP3ZkV0/HtLDVNVkyYrVI/do5ZSxQAtPCr2iO0kL4lmZob5DDdrjgh7KFTWuVFhiNfuU+PAPkvFkuBKZteKuudNyrOrm6PpkOVbMVfvLF8Qg18vTJ8bEeJ21a7/8mBDZX3/KT4oTwq/hTsVNz05w1JyLvpsdsPufTn4b38VpCXHSHMvV5wS6NIWhZ/z0iDhpzxB6apG6We+Qe1yNoXOBY0FkJSg3M45UU+QYzDS31tSJIS/MKfrLOogNKcnlWu+/f+F3pJehk0ZUtiZ81DxMIDrtxZdM/QIeEqZHR29rsPMw26nfVY3hNFXOrGgS2z558LaBO46UTp/NwCgxog5aSXYVg+gpcGgrjPnP271DUv6DEda0Rt/kYgIu8Vlm9oEFRHj0mJZpGsQlOMYaOdNgh3hVvzoyCY6PUKGyyMDNKJ/ZNyJCO+tdX4IYAI+84h57vd32ms8s0/K3G/F0S1J4CPmfN0ymPvWTDvFvSLyt5XPoPnvJXGlV4bWUR1/TKLCesG455S/DveJ3opU+IpREXPj9tOsA1CfWONvuttne7FRZWBj7AZIZs5/3XTCgsX8oKuzyfXjxrSuZN2YhL5X2LoSr4PFNDZMaroDIfcGVoN6Fo7d9mi59FFzvjrwnTv0Y9VlpShe32t4yu+P5jaZFXE/h3QvU6yEkt7/3beo8SDtCPXBpBqsGhzq3vVNoKZKnuOkmQKKvxjw1SMEKoHLJxSMoHRvXMJS9+FXmLDhY02J7vYxTrMdbFxER6RYjoOjRdys/5P68BvHcZNrFaDW8v4/c8zJIiS0ShtTe+U+UJJoy6ookYO5d/Gz+2B3UUnb6s/N7IHH8+UZ0cLPt/eXEB2UtbxIY78h21Hro0LZ8gNbsOocc+4BXm3wVpi1esS90CpTm9bGCzTJs0KVa3oQY1KEnRED6bVTk1eaVzAjAqKJ4Pfutyfaef7Q719CgR6sx0b+Go8WAfYy7w0M1ZtbWueeXlVh9y716WDGB7Q4lgqyrY3B+nsH6YmMUzpO39iwLhIgcFl3+6v0ufJwUfGia4NnevwFYsriaAQAAAAAAAAAAgAAAAAAAAMgDAAAAAAAA2gAAAAAAAAA=eNotxTkrBQAAAOCnED0REREhNzvxnDu52cnNTniu/cnNTm52crOTmx9j8H3LFwj8i3K0YxzrOMc76AQnOsnJTnGq05zuDGc6y9nOca7znO8CF7rIxS5xqctc7gpXusrVrnHIta5zvRvc6CY3u8WtbnO7O9zpLne7x73uc78HPOghD3vEox7zuCc86SlPe8azDnvO817wopcc8bJXvOo1r3vDm97ytne86z3v+8CHPvKxT3zqM5/7wpe+8rVvfOs73/vBj37ys1/86je/+8Of/vK3f/zrP52zMmw=AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eNpjYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAwwAAAAAAAAA=eNotxWsuAgAAAGA2s2bNrFkTwgHMI3KA5hUOYChxACPPA5hQHKCRRw5glNcBjAhH8qPv+/M1NzW0uNUBtznodnc45E6H3eWIu93jXkfd534PeNBDHvaIRx3zmMcd94QTnvSUpz3jWSc953kveNFLXvaKU0571Rmved0b3vSWs972jne9530f+NBHzvnYJz513gWf+dxFX/jSJV/52je+ddl3vveDH11x1U9+9otf/eZ3f/jTNX/523X/+Nd//ge/tikAAQAAAAAAAAAAgAAAAAAAAFgLAAAAAAAAdQEAAAAAAAA=eNqNlsFpQ0EMRN1TCthu0lPSSUoQJKecdBMIAoIcVEKwQQd/zYPsxexYSLuz0rNvt/+t97f7+jjzSd/T/lm3o+Ntxb881veKH13nd8jvR98u4F4B50k4T67418f6WfGj6/MXnL9W/Nfnff2u+NH1fRvuO7rhu+l+sKPf145+Rzv6vezod7Gj/bejfbaj/bSjfbPlA/XXVR8ftG5Ln72Od6gbkCeXPj7o/LX08UHXnX5wnDPdDw794NAPDv3g0A8O/eDQDw794NAPvnwgHlz157kK4FsAxwJ4FcClAP4EcCaAJwHcCJiLRC7quUiYi4S5SJiLhLlImIuEuUiYi4S5yOUD8fuqjw9at6WPDzreoW5Anlz67HX+Wvr4oOsOHwp/xzQfCvhQwIcCPhTwoYAPBXwo4EMBH2r5QL+3V3180LotfXzQ8Q51A/Lk0scHnb+WPntddzjZ+L9Dc7KBkw2cbOBkAycbONnAyQZONnCylw9/6dwCGA==AQAAAAAAAAAAgAAAAAAAAIAMAAAAAAAA7AEAAAAAAAA=eNpd0Nc7EGAchmElSZKksimbsil7ZFM2ZVP2ao8/v4N+38n9nrzX9RzeGRn/dzs+M/4Wn3pW/B0+9ez4u3zqOfH3+NRz4+/zqefFP+BTz49/yKdeEP+IT70w/jGf+tP4J7g9iy/CK5NejFcWvQSvbHopXjn0Mrxy6eV45dEr8MqnV+JVQK/Cq5D+HMfk9iK+Gq8ieg1exfRavErodXiV0uvxKqM34FVOb8Srgt6EVyW9Ga8q+ksck9ur+Ba8qumteNXQ2/CqpbfjVUfvwKue3olXA70Lr0Z6N15N9B68mumvcUxub+J78Wqh9+HVSu/Hq40+gFc7fRCvDvoQXp30Yby66CN4ddNH8eqhj+GY3N7Gj+PVS5/Aq48+iVc/fQqvAfo0XoP0GbyG6LN4DdPn8Bqhz+M1Sn+HY3J7H7+A1zh9Ea8J+hJek/RlvKboK3hN01fxmqGv4TVLX8drjr6B1zz9A47J7WP8Jl4L9C28FunbeC3Rd/Bapu/itULfw2uVvo/XGv0Ar3X6IV4b9E84JrfP8Ud4bdKP8dqin+C1TT/Fa4d+htcu/RyvPfoFXvv0S7wO6Fd4HdKvcUxuN/Ff8Dqif8XrmP4NrxP6d7xO6T/wOqP/xOuc/guvC/pvvC7pf/C6ov/F8R9BVF1dAQAAAAAAAAAAgAAAAAAAACADAAAAAAAAxgAAAAAAAAA=eNotxRF0QgEAAMB6LwiCIAiCIAiCIPgQBEEQBEEQBEEQBEEQBEEQBINBEARBEARBMBgEQRAMBoNBEARBEATdyUVCb1HHHHfCSaecdsZZ55x3wYGLLrnsiquuue6Gm2657Y677rnvgYceeeyJp575w5+ee+GlV15746133vvL3z746JPP/vGv//zvi6+++e6Hnw6F30UcdcxxJ5x0ymlnnHXOeRccuOiSy6646prrbrjpltvuuOue+x546JHHnnjqmV/7BioOAQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADAAAAAAAAAA=eNrj5KQ9AACx7gOF
</AppendedData>
</VTKFile>
<?xml version="1.0"?>
<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
<UnstructuredGrid>
<FieldData>
<DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="21" format="appended" RangeMin="45" RangeMax="103" offset="0" />
</FieldData>
<Piece NumberOfPoints="231" NumberOfCells="100" >
<PointData>
<DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-0.00435057182" RangeMax="0.0043355890935" offset="84" />
<DataArray type="UInt64" Name="bulk_node_ids" format="appended" RangeMin="0" RangeMax="230" offset="1628" />
<DataArray type="Float64" Name="heat_flux" NumberOfComponents="3" format="appended" RangeMin="0.0080534757772" RangeMax="5.8788017198" offset="2200" />
<DataArray type="Float64" Name="temperature" format="appended" RangeMin="-0.95017130689" RangeMax="0.94119869316" offset="7420" />
</PointData>
<CellData>
<DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="9016" />
<DataArray type="UInt64" Name="bulk_element_ids" format="appended" RangeMin="0" RangeMax="99" offset="9080" />
</CellData>
<Points>
<DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="9360" />
</Points>
<Cells>
<DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="10484" />
<DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="11760" />
<DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="12040" />
</Cells>
</Piece>
</UnstructuredGrid>
<AppendedData encoding="base64">
_AQAAAAAAAAAAgAAAAAAAABUAAAAAAAAAHQAAAAAAAAA=eF4z0zPRM9Y1NDfRTU80NjZIM7EwNk8FADKlBO8=AQAAAAAAAAAAgAAAAAAAADgHAAAAAAAAYwQAAAAAAAA=eF5N03lMVFcUBnApm1hkK5t2kVIoQogUTeMAk3cHJGwKWqPOiFAnLLUskaEhgWILtTUBbBBHUglQSQDZRghMC0jh5d0KlCIdKEPEsC8DCEUMMEOr4Ng2755bKP98Od859/eSSXBsrkpn5rq4kvc1utShKU5wWPLG1dUlzo/mIu138X/mv3UoYWaiYc+IaE7Q/ruJTqOv7ZuZTEPJT63MM677niB5XrDBYQt1mXfULnxgdpBkzjXoeVbWn8qW5ZOZ8V0he2T4FNKoEXoLffjBoo5FpnZODG4BdUfBO2AGfo5ixz0cnywsK6eulrrPqfs59K1T4IZf33/owXUrPL9q17/+cpMzM+gKyDM2xtxCJ8lEFfS8K3mcKMSe9vzM2HiSO7Q8Se6Q2hT6vbFxXlMqC2STT10De3DnwOM2IZM87Lddc494loPvMNY/g7dsDL5aB70+EtzKLzwGbq+74Wrr2TTHgz1cy2eV54dW1FzIybsk/3o8SXrebWOzhYM5Gn5mGoKr+T1jHFhFMi0CerU4I9/VzQ05XAG3wZr0XNtp8MJWK0iaOixsuy6BWWx3MPk+U15TTrxXseSOuTwwQ/oR6sr7iuoMO3zxi4fi8nCtJVK5v7cQM7IPaaSQPwgkpOfd3v0yYdQGucOPRGSPdQLI79egT3n93t3dPr5ombqbPvBelQfebAhk06B423XqT2E/tiJ3eFhG3QzIUlvoj1J3WNXYbhIVikUnwp0KCtyQcvefogrLIyjPGPLSOeh5d8VJLvzFl8zY3ozs8Yw1ZNin0Jv0f6XNMg9F/v3gIiG8b9rcAPcl5CdHdtzu7Jtsz0fw3g7u8LQWMsQF+oRBcGOyvI7XFJzF97WdUo2DAA1XXBavfHkMedyGHBmDnvwfy4JZ/xky4+gSssd9csh0DfTPDvUWc9Kz6NtscFv74P2ZXPAU/7mz/3N7tX6iaeoWgBdWTN1x6B95gftWruhJvU6KP2ydkLs/DUR971qNJq6cQoHOkHWN0PPs0uw37MCPZMahcIfLHSHFCuiPKpS5MyNSFEfdFiV136Euzbq2HfcmkyEcaIb3D2GPnd0gJRz0sXXgXkxf08e6JOD4f5pamjNPoT03imSvKSLRUB5ktR568jvM6Pzehjs8fovs8VIOZORz6KMfBFV0miSgq9St+pu6+eCdlkNeMlBuu6L68+zkK3h/IRe8PwohS03IHX6CwW0cf9G+qE7FztaLd4JOStD9hoh4VhGLjGjW05530wRy1teBzLisiezxVj2kgQ30fntGh707U1EpdWPsqKsEL5Bmg+2Oqyq8IWzfC+/vwHdxJtzhALjDx6mbauI5UXMiDue5pkh6OSlCx/Se10yTUI/tWNs5oyQ0ajlQ7NoiRQFdYV1rv6oZz3lZiV2lFF/w3uedvJ6It9qdz7jqErHoTUN9RK0U+7gXTs+FxCFTU3BrncG96A9uEHWLzcFt1YUS94oG3I4PwB3rAPd3R3C3qPsvs+10uA==AQAAAAAAAAAAgAAAAAAAADgHAAAAAAAAigEAAAAAAAA=eF4txdNCGAAAAMBms9ZYs23ba2ysWc32mpvZGhtqXrPXbNtGTd/Rw+5eLiDgv3RO7wzO6EzO7CzO6mzO7hzO6VzO7TzO63zO70AHuYCDXdCFXNhFXNTFHOJQF3cJl3Qpl3YZl3U5l3cFV3QlV3YVV3U1V3cN13Qt13Yd13U913cDN3QjN3YTN3UzN3cLt3Qrt3Ybt3U7t3cHd3Qnh7mzu7iru7m7ezjcPd3Lvd3Hfd3PEY50fw/wQA/yYA/xUA/zcI/wSEd5lEd7jMd6nMd7gid6kid7iqd6mqd7hmd6lmd7juc62vM83wu80Iu82Esc46Ve5uVe4ZVe5dVe47Ve5/Xe4FhvdJw3ebO3eKu3ebvjvcM7vcu7neBE7/Fe7/N+H/BBH/JhJ/mIj/qYj/uET/qUT/uMz/qcz/uCLzrZl3zZV3zV13zdN3zTt3zbd3zX93zfD/zQj/zYT/zUz/zcL/zSr/zab/zW7/zeH/zRn/zZX/zV3/zdP/zTKU71L//2H//1P6cB3J5nxg==AQAAAAAAAAAAgAAAAAAAAKgVAAAAAAAAKQ8AAAAAAAA=eF5d12tYjFsbwPFE7UhJItqEJOxEQgdmtyb2JpvQ+4aIVJNUKsmhg1JJRUpTQjofHCKFSoV0TyNld1ZJSUc1kozppEkHr3fW/cHez5f17bmu+3f91/OsJTebM0F7ujfc1bf112ufAWXrHfpTV5wncoHlp8YHMqG8vnjwycUtUBTDl7og70Nexuz5lNYLMIuVeev9MROYx01cFqV9DkyntPUaNQFk9Q/sbLA2AUt5x+0lJ5LB9mVGTEF2JnzcXblOjrEF5F/Oy93DuA/OW6Kf3VitAwLrs398zyjPj+KZb7ZkP4Q1nVu4ZQGZJIztuitt3JCojGbp18xOg+3tQyk9t4GohE3Tv7/BhAgaXM+9mhMHHTrqJbvvAZmYlB589k8TwpiT8qZxyIm82/hppkFEJtHeLavLm7aFWBdsf3ZBNZ6IiR4XhmjxuszoKY8LaXl+g+T2xFby53lBkd3t6WlJ8mAwGqipPpoG03SPhfyaz4E/fr/GtnHaBTID3w2FI3fg8Me7ys9LSsB4hoVswWJLeNp/WuLrYAL0vK9dFJtXAhHqRz5mzLWE/KEF310/BMNcFwfFR0EcSOnatzx6+S7QastK+I+uMXFeNJzopb4RBBdeLi+7UJ9/0XeEufK4D3GO92/UYnGIbG+6v9Q3E/Kb9CQ3W62TJCev1ewru4Tce2xQxRWzJO+qa6sH17mC/OaoyLiIErLQzl1SaaIlqdFTTTUzjIBRrRqx3U4cEj7InPuX1C6y/o3fp+lKCSCa3+d2nmiJqGSkP9aJS7JOgt8+U4cQB+owCx0mo8MaHeqwCB0OoMMlaerwDh346BC/ijooCKnDQnRQ7qAOgmbqcEKdOkiVlIgctqODNTrwv1AHFjqkowMTqMMUdJBDBx6LOsSiwzg65PZTh3k/O4gdEfXACa5k1KEDI95sy1MxdzBPMKyOEpODmPKHTo5LKmC9k9Bs9ucKUEiQnju3lAUr5eIVU1tfQrWiw+PssnqwuyFoic8/Cv2hI8fq/LLhS/eXIFduPWx7vFjx7MOj0FASXOF48SZJ74ieF55cAZ6Ct24yMSwocFPPNXvLJfVWeV7TzIx/9MC9vl2Hl68Xt2FHzuKX5HzYo3LT/RVEK93+uasTi1Sdej3584HnZE5MjD8nup6YS1wL7fc+Ss49nKVVlHuH1J+QXqkQX08eBro8XnvuKEmpPvDG1ygTOsSTBRHOFeR9+4ZlR06zSKeTwELmQRF1sMgV9cBp+pvhnKGvnJVaCg9jqUOvHHXwQocV6NCRTB000aERHQzvU4c5bOrwCR1O3KMOp9GBiw5y/dQB0OG9PXWITHkuctBFB390OIsOr9FBCR12oUM5OrSig8116nAVHSZNpA68JurQ/LMDM1rUg2ZLIcMfHZwXpqh4sk9Bvezt1MXtU+GwYUv/1r5WWGqctUb3cx2cfqM/3GDqCFW3bV5rpTRCfcjmPYVO7ZC1I3KOXqQrxFpvWm/yugiCCjwmDNi2g5XavaFitivYrP/rNWtJAfmtM1Pt2Ms6aFtnaFS0zBEOvZevMOHWE87i0BV/Lt0Lk2rbpn6cI8hXu/bgy6WJLeTOPnNJhSt1ZDK/t1Gyy4Hctf2m3TmhgcSoEE+2UTvx+nN6T66jK3n0sKRtaAmXJOSUGIztaCcZm7dfqHF2JR5530KHdryA0a3FyeXJdYQXGrCg9ZsD4X457bA76S06cOj3YXsmQ3psTVKEeStUzKMOc+JTRA770UEZHbLrqEPzvxxqjahDBDqw0WF0MXVwQgc9dNDXpw526DCwkjocetsicvgNHVLQYeIwdXiEDrfQgUeoQzI6xKGDxlrqYI8O8tuow7tw6sD52cHnrqiHB3pcxnx0mHovfYmEnCssDRerPOQvAwqqdfGv5vIhI8V57e8nmkHV8JY11+s4xE3oVq1w74IY3YxDh891QZyO4lU5K29oncmxv+lfA1+cTaKtz3RB0bBds/k+b3hXec/Av6iK1M/3e7NgZzM4+8wqv2lzHJaY8su+yn8gtSkNebytFvDge94q7XcD+W7Fe+01c3tIxdRN65plmonw2dMDvzOOkw/FW9viV30gDUWhO2LMusiKuy5j9Rre5Fm3+8bvBq8Iq1wtu9C8i/Qvkip+v8qb8BwvlWSWVMNMRmfLxIXNRNZ6T8AZw+PEvEYySmz0Azo8oT3cLmVECXenPrn0GTbdpg5aC8RFDt8WUYd76OC+gTqkosM1dNioTR1mz6IOw+jgO0IdXqIDHx3Gz1EHNXTwSacOWlOpgy86ZKHDg0LqMIgOr9Bh9A51aESHk+hgvo461KLDEnSYgg47f3YQOyPqwcf9FSMbHdzeSctG7XSHBbnHNR+vlgNGtGmQqv8QZAnG5ZMmvAfxZ37lOiZuEKEozdKc2Q/VntkhxXF80B3UdRmN9AOXI43K2v1NkP4Xs9Aikg8Sj+yvvo/wg9lHA5oPbmskVRLb9t/kt8PR/YVtH9e7ge+5qpDEw31k9rdHBX/XskC39Lulr9VwvsDZ3IdV/5WUTKkOci5qJ76xN5NcpNyIbXeHreOpPhKZzBtmO/HJ+lY+f4GHHynj9ajcft5Izr69utzBhU9qY+q5kZ5+pPW+TqCmfhOwTm81Ua5uJ12Tsh8cUnQjyVZaX4fe9GEPeaIexKLKGZfnyhiUkSHoqqcOZ/RcRA6q6JCODhZ/U4dodGhDB0UhdbiCDmnoEJtJHQacqEMdOiw3og6e6FAhli1yqJWaYPV/h0F0yEGHAl/q4IwOt9FhgEcdpn6gDhHoIHeFOmSggwM6eCpSh5R/OLBFPVhoFjMS0KFqgnypWpUnRD7s7e9wlgffQZs3WXwxjsHk1pqsUh6sGG8WG9Dwgv2rN5BvLiMwoDrrWMuBPjAUZ0lfPxsI49aJNmF7O2GFMKFky74+cDmZZyd+JhA+NDOrrWd0kLy3Vjau2TwQy1Jvei7vBbanslkFpd+IrcLkhezVh2HBHu32joyxfImvByKMo8WY6WkOVh6BPJK1dnRtXJ0neS7nUS3+9hs5VHuFKzDoI3kt3U1vzAPJyhe+G0e2dZDq278rr/6jj9yVj9TMswwkCgfbg8omdMIZpXXDS67wiPCOwHpBlyfh121naeuM4L7g0h7Yl/Lenh6pfVYmxnEYmy5yOLGOOnj+y0F5lDrYoEM/OnAGrEQO/eighQ5O7tRBiA6F6PD0CXWwRwfJedRh7kTqII4Oj9DBdCt1KEMHO3TwbqAOG9DhNTqI/UIdGOiQjA5T46jDwM8OnBRRD627Gxg8dGBMeaC2NsUH5BgFC83/MxP0mcbnY6R/4ZwZ2G5Rda0b1IiUw2IJXyAzU+vmp4pzpqStVt7nOAgrIxynezpehNcxlVXu7T3QPC4lqW03CE9Y85RW2l6EpFtTj7imfiK7ol3gN+9uiPCctuDgoA/IeGq+XGomzqyPsvmw47A9WFxlxSrxxCBUiaWV/lSSKRPlYXx/Szcxne5qrFrjQ9ISXwyPWIoz3Ra3hHkYDZJJ8Ze87/9xkdjM9D8C7Z9IuJpG4tSdg4QHRW+GN18kqjYhla9CemDGaddUsrebyAdasJSafIiehG7QzEviHNpDFj1PRnUwLkYvmufRLcnpl6IOSfu4IgctdDiGDk361MEQHaTQoTCUOnSjQzs66FlThwR0OIwOZv7UYTo6bEqkDmfEqUMUOoihw/lfqEPuvxzqblEHT3QIQQfLVOowBR3WooNCJHXQ/4dDjKgHdmlbXhw66F77NePGLj94YLZKqwBmQ/o0g9htc2Q58TXFfi8P8WE3O6/Z94QfLGFGDPselOJszAnVeu8lhJ2zNXQf7w2FX3W0Lswq6QPl+0FFM9yFIG5k2cf+byjUVkQtcdXpI5ev7GR/MPzxHomNepJWfvC9tbO1bYYUUzN0872NNo6QIO1uIKwSh/0br88+Xy7D3Gmn42okwydBCxbntK73I8Un1AJMlaSYEef2CBX2CUn4wC3ZDvVQopKnGZVh3Ec84o8XCfYLyZqwi2XBK0OJ27WICQWJfbBpnCsdp8wnbUlGdwY3+RHu+O9nEzdKUQefQnrvtjjJsNLLuXtgWIaTH0EdgnO1RA7x6BCLDqaB1EETHZjocONX6rAKHdaiw6bN1KEIHULRQWZsg8hhHB2WXqYONitPixzM0eEPdFBQoQ7V6HAVHW4IqIMuOnijQ/5N6nACHRzQwes6deD87MCsEO0LpnYn4xw6CM2mT96tEQDCwbfe61lzwdndltMtPYNj57V0zyulXvgc7F4j3+kPf71mlj6tk+X07Zxl2BM6ApeimgYEyWEAl2UdHXKGwPrY/Ht2QSOg3dCrYp8QBnXweb76yiFyxkXgoT6lF+RsQ089r/SHFwVBSnvZskwOOaWaNM0ZhFkaX+RCJ8HiEJUnsV3yzOL2p0/CPwrIvR7Xmsm3/EnTyXeSFldlmcv0e1xZtiNkNJl9JDkojFw4GcW5s3mICJIfZvgeGSGelY1GScFh5Hwu42162BAEj644JdEvIANj07oWZviT4dpjn0PyZHFf0HO1j0snwyLkbFjHqDwnezd1yCpvEDnY/8vhaCh1+C868NDhewx1qESH/ejg85o65KFDADpYu1KHPHRoZlIHvvQykcMSdChEh7Ze6vDxXw4esdQhHh3q0CGhgjrYoUMcOgxKyYkcxF//5MCspP/Nr5kMe3RoXZGYv+NKIFSldWpM0lQGtUfqN9r8FDn7VgWtkJzWB+tqP01NnRcIUeqlrJtSMzib/6ph28wZA12x555F8eEgqb6sOV1vDMQtQO7ijDEoXH2sSDImHEgaZ0Dn2SjZelTjw7axXhDXa1w0Ihn4477e6xL4Y17NFz3732c6g3PI+BNjSwkQZudcz2QpMgNaTs+0auwlHXPquezGAHLi8LXJWz7JM8Nde4wUBKPENP/WchP/cLLOSy08sWaUjPIv5xr3j5KK4LJJhwPDyeQG44nzFcfASZs7srqzl3hc60xR6QogpralGg9/zEt7yBL1wNwq/2xc6Th71SlFzuhy6mBxlSdy0EOHA+iwpo46pKLDKnTg9XNFDqroIDxIHeYaUIc/0eEwOgRoUIdt6DA7nzoITSc+/b+DbA51MEOHBnXqwEaHQnQYf0oddqFDHjron6UOKugQhg4twdTB4h8OOaIeTFuln037lTr8D7bK9ZI=AQAAAAAAAAAAgAAAAAAAADgHAAAAAAAAiwQAAAAAAAA=eF51zG1Q03UcAHBgCBk9Ccf0QKcuGY8FIkdqyq+lqMRT8eCBQQYXYOrSieLGNkrJDgaODdxATcAZhrI7YDBCSL+boJeABMYYM0a45UkiM3FqqFjd+W0v/pevPu8+hfH9WTXOR8DrzuVnvqvlkFEe85VHrRyaUwbeUodVwHUz2+9QYwl4Fo91KUfyYW4nvXGOKoDcPzXqItTkkhWf1fW43uYR13fVBvW3u8lccXXMKn7PjxNxD0d61lYAa+cfzgyRGM69mrjeSX0AwhOMVxcY+LChPevu6qH9wE03Jxe25EPs4so1rdsKoCTIwun9swBOfLzqt/guPjQ99Zkd4HDgv3cKXz/KuxLfOMr7Eb5l+H6HbyvlbabVvjZVVg6MwgRdXkQeudEoE91bKycD44vqGssrifS8mllCiskG7zm/TKfng955LHHG6Rh88DNX7tmjBO10qheXpYT6sqqCh0yF/W3A1xdfI756yrsJ30F8I/E9j+9Jyhvc0SzQzcpg2ayPPIuhJDC/L7q9tpm4bDELkparyZbsh3cSi+oItyTUP03Phzd9lgU9oqugoVFiNVZrYK72aXFDnAZkPyUNTIWctb/++LLw7caXhu8n+O7Cl4WvCl9XfOWUN3/b76947ZJBuxNRbOxsIfPY7fW6bB1hiWsuqlU6cqY+pvBmhoZUTovS73rzQawYZR2XtUNS2oMnf23ugtAzKwUOIV2Q9riBmVn3g/0V4NuKrzu+/viq8K3DV4rvZnyD8d1KeV+vOugiGZaCtCxv44I2Lamo2XtWwOkjio6wjsdNfURijGAwD+pIyadtwsAwHhxlp5ij3LogIb2Ddju6HyTv3C5OZfXDdtHLYbuPXrS/b+ArwVdGeaX4VuJbiW88vhX45lDepO2zKe6BUvDeN5nr436F8BJGjJbpIeJHp1liPPQkvDRqZN3wFcKFSQV7yX5oWmLZZovthUGmWNBm0MN2d7Lw0iU9lM4Edgbf6LG/yfguxleEry++Yfh+ia8K32F8v8D3EOX1DfmwvKBXAoJoAS+JP0gO197MXDsxSthixz6Gq4mIHm3YcX14kOhNx1Xh5n2wPnuZWll0DXLqrLSFOhPseUmbx2wygQ+9TfR28jX7S8dXSHkj8BXga8U3Ct9MfPe+4JXUGNbFOh6G+xrBeGiQgYwOOczI3SzklHgyl+llIWzncyuzvzaQFs8noYnCvdB9TGk1BozA8UQGj3AtQEJ7HeM+/9eMrcnNjw32Nw1f2wveSHzH8dXiW41vBL5syrubN18vnRLDNy5VHm5KEwlpcQ/yeG+CLHebE18ZO0F8HMJGaDYTUWqOxCnu7YEn/kM3bIfHIHXprWfB1RNQY/K9Z1BMwNLGExpOxpj9PYBvKb7B+K7AdxG+O/B1DHj+bsZXia835W3Vcur1siLoPH1ray3HTNY8WCO0zbOS0Mnu9hiGlXQKi2PnVZiJ9iS9/O9ILkT96vQ+22gG/k56/dUcK9C+5wm9M6wwtqks19Zttr+X8b2A7yp8g/G9gK+38vm7CV8Bvk9P///7Dxf2wQM=AQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAACADAAAAAAAArwAAAAAAAAA=eF4txdciAgAAAMCQWSFbJCuzsjNDiuyMyo7y///gwd3LBQL/WtzqNgfd7g53usvd7nHIYUfc6z73O+oBD3rIwx7xqMc87pgnPOm4p5zwtGc86znPO+kFL3rJy17xqlNOO+M1r3vDm97ytnec9a73vO8DH/rIOR/7xKfO+8wFF33uC5d86Stf+8a3vvO9y37wo5/87IqrrvnFr37zuz/86S/X/e0fN9z0r/8AXBwTVw==AQAAAAAAAAAAgAAAAAAAAKgVAAAAAAAAKgMAAAAAAAA=eF6Nlj1rlEEUhd9GQTt/gLY2VloIFo5WfrRpLAyIEO3EUrQREQwSIfiFiq2Vrc3+hMFEhAVhqowMBAYCTm0hkmTPLHPOveJtlveZu+fse7g7M9P0f/Xh/X7Ngs2j8HMHNXf6k/DDyo5OEX7noHYd/Sp8e2u/9hzfFv79fkuOZ5tH4cjB7k+Ob3Z0inDkYOtX4cjB9m1h5/ipE9ffzcJKPnnx6O1bfZ05vm/zKBw52P3J8c2OThGOHGz9Khw52L6tv8dExXycB+ZR+DgP3J8c3+zoFOHjPLB+FT7OA/tiHuIin/s0D0s+zgPzKHycB+5Pjm92dIrwcR5Yvwof54F9W/+9ExVz5GDzKBzPdn9yfLOjU4QjB1u/CkcOtm8Lp9d/bJw/Ow+Pvp9ZPfbqQV9njhxsHoXDz+5Pjm92dIpw5GDrV+HIwfZt/XdNVMzH/YF5FI4c7P7k+GZHpwgf9wfWr8LH/YF9sT+kxf/lMe0PSz7uD8yjcORg9yfHNzs6Rfi4P7B+FT7uD+zbuv9kVqacZ9KPHJiP/0PuT8LHZ9YpwpEDc+TAfLxHsW8Lb1+svbn5ZyfcvfFp+9nDp32dOXKweRSOHOz+5PhmR6cIRw62fhWOHGzf1n0mKubIweZROHKw+5Pjmx2dInw8L1i/Ch/PC/bFeVEW++d6X2eOHGwehR/6zZ3+5PhmR6cIH88L1q/Cx/OCfVvXm6iYIwebR+HIwe5Pjm92dIpwPNv6VThysH1beHLt97dLa7th8+qXveefN/o6c+Rg8ygcOdj9yfHNjk4Rjvex9atw5GD7tv69iYo5crB5FI4c7P7k+GZHpwhHDrZ+FT7eH9gX94e6OE83+zpz5GDzKBw52P3J8c2OThGOHGz9Kny8P7BvC+O5uizmyMHmUThysPuT45sdnSIcOdj6VTiebd8WLmxdXln5uhdWP/48cuXey77OHDnYPApHDnZ/cnyzo1OEIwdbvwrH+9u+jT65GuU8k37kwBw52P1J+GFlR6cIH/d91q/CxzlgX9wnfy3uV6/7OnPkYPMoHDnY/cnxzY5OEY4cbP0qfLxPsm8LfwGHmV77AQAAAAAAAAAAgAAAAAAAAGAYAAAAAAAAnAMAAAAAAAA=eF6F0te7yAUcx3FJJHvUoWS1SMNOIidFRmUnhU6FSFtDQ46VRLQU2YVoiEpLciRCSprSQKq/w0Xv90U9z+/5fG9ed5+b77uk0r93AtbE0yr992pgI6yMtbAE/7/TGE/E2li0czpWwTpYtHMGnoR1sWinCVbFeli0cyZWw/pYtNMUT8YGWLTTDKtjQyzaaY6n4KlYtOMf/M+F2BL9q/++AFugf/FfF+FZmPb9k/+7GM/GtO/f/GdbPAfTvn/0v+3wXEz7/tV/t8fzMO37Z//fAVth2vfv9tARW2PatwP76ITnY9q3r+bYGdtg2rcDu7gSu6Cd2V1PvATtwC6uwksx7duBXfTCrpj27cAueuNlmPbtwC6uxm6Y9u3ALvpgd0z7dmAXffFyTPt2YBf9sAemfTuwi/5YimnfzuzuGrwC074d2MUIvA7tzO5uwGvRDuziRhyAad8O7OImHIhp3w7sYiQOwrRvB3YxCgdj2rcDuxiNQzDt24Fd3IxDMe3bgV2U4TBM+6VoF7fg9Zj27czubsXhWIpF+3ZgF/fgGLQzu7sbb0M7sIt7cSymfTuwi/twHKZ9O7CL+/F2TPt2YBeTcDymfTuwiwdwAqZ9O7CLB/EOTPt2UIYP4URM+3ZgFw/jnZj27czuJuNdmPbtwC5m4aNoZ3Y3Ex9BO7CLJ/ExTPt2YBez8XFM+3ZgF0/hFEz7dmAXc/AJTPt2YBdP41RM+3ZgF3OxHNO+HdjFPJyGad8O7OIZnI5p387sbj7OwLRvB3axBJ9FO7O7V3AB2oFdLMXnMO3bgV0sw+cx7duBXSzHFzDt24FdrMAXMe3bgV2sxIWY9svRLlbhS5j27cAuXsWXsRyL9u3ALl7DRZj27czuVuNiTPt2YBebcC3amd1txDVoB3bxLr6Oad8O7OI9XIdp3w7s4n1cj2nfDuxiM76Bad8OVuIH+CamfTuwiw/xLUz7dmAXH+HbmPbtwC4+xg2Y9u3M7j7BdzDt24FdfImfop3Z3S7cgnZgF7txK6Z9O7CLPfgZpn07sIu9uA3Tvh3YxVdYgWnfDuxiH27HtG8HdvE1fo5p3w7s4hvcgWnfDuxiP36Bad/O7O5b3Ilp3w7s4nf8Du3M7n7DA2gHdvEHfo9p3w7s4jD+gGnfDuziCP6Iab8C7eIo/oRp3w7s4k/8GSuwaN8O7OIYHsS0bwd28Rf+gmnfDuzibzyEad/O7O4f/BXT/nFuhFa4AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAsQAAAAAAAAA=eF4txRuQhAAAAND7NEfRzcLBzlF0s3CwcxSGYRguLoZhGIZhGIZhuBiGYbgYHPSevI+XQ+hPf/nbkX/86z/HTpw6c+6b7y5cunLtxq079x48evLDsxev3vz07uD1OPTJZ0e++OrYiVNnzn3z3YVLV67duHXn3oNHT3549uLVm5/eHbwdhz757MgXXx07cerMuW++u3DpyrUbt+7ce/DoyQ/PXrx689O7g/fj0P8BDTDBAQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADgAAAAAAAAA=eF7j5YUBHpoBAPDXBLs=
</AppendedData>
</VTKFile>
<?xml version="1.0"?>
<VTKFile type="UnstructuredGrid" version="1.0" byte_order="LittleEndian" header_type="UInt64" compressor="vtkZLibDataCompressor">
<UnstructuredGrid>
<FieldData>
<DataArray type="Int8" Name="OGS_VERSION" NumberOfTuples="26" format="appended" RangeMin="45" RangeMax="121" offset="0" />
</FieldData>
<Piece NumberOfPoints="231" NumberOfCells="100" >
<PointData>
<DataArray type="Float64" Name="HeatFlowRate" format="appended" RangeMin="-0.00043368846559" RangeMax="0.0008999400012" offset="92" />
<DataArray type="Float64" Name="heat_flux" NumberOfComponents="3" format="appended" RangeMin="0.34933725275" RangeMax="1.0019098568" offset="1596" />
<DataArray type="Float64" Name="temperature" format="appended" RangeMin="0" RangeMax="0.69421802207" offset="6856" />
</PointData>
<CellData>
<DataArray type="Int32" Name="MaterialIDs" format="appended" RangeMin="0" RangeMax="0" offset="8444" />
</CellData>
<Points>
<DataArray type="Float64" Name="Points" NumberOfComponents="3" format="appended" RangeMin="0" RangeMax="1.4142135624" offset="8508" />
</Points>
<Cells>
<DataArray type="Int64" Name="connectivity" format="appended" RangeMin="" RangeMax="" offset="9632" />
<DataArray type="Int64" Name="offsets" format="appended" RangeMin="" RangeMax="" offset="10908" />
<DataArray type="UInt8" Name="types" format="appended" RangeMin="" RangeMax="" offset="11188" />
</Cells>
</Piece>
</UnstructuredGrid>
<AppendedData encoding="base64">
_AQAAAAAAAAAAgAAAAAAAABoAAAAAAAAAIgAAAAAAAAA=eF4z0zPRM9Y1NddNtzC2NDZJMkhNSdFLySwqqQQAUucHSw==AQAAAAAAAAAAgAAAAAAAADgHAAAAAAAARgQAAAAAAAA=eF5dlH1QVFUYh+8CkaOZDJKVLrRDNMhOAymITdxZNzSkTRioDPwgLqADlowgDAlEeyHd5asZEiGQHb2DuK5ZtAEi7N72bh8gRAygIJv/uEgyDNOkEX2CWfv+Nnam+88z73vefc457zlnS5jYWKFYto359+PTolmGvtYYQtQziB2LVmJICGK5t0gMZhC/+RB48y/ro5E+Oe3Z8zb5a5lZedHrXV4+Puima1w9qpuluq7CAYqbpm+7aI+RX6d8f9Hn5C3s/4ziQsdFolLTwmaZ3tkU+u4qKSo36z8v0zt1y1XPbyr+kX73Ss2Ii+pD8jsU9007iAMvHyfPVXkPxTWhHxNHLxtEcw+844+7vEry+uzupfod7V8R+dV6qnf4dlKcFw2POryamMihnhnMpVjxezobtmHHWuvmDdLCVOayl7nUTeO25CEi9/WnxGf/FImmQXicsyeJ9rMWzHMU8yf5cOKLcngnk6s146ZI8rJxEzTeYxnDfpdsxCd+xToNfw8Q/dbDp+iuIC7Fm4h8wQEx9mCo18yqEGmt0uN19E7QOpJeGiOqva3EpZVfEN+T0TkyATMWrLe+hOh3xYj6/nx2Yw68gUGu/r6APqRdQV9LDERu2EjrWGHpoFjRyBNN1jZ4akvRLx3WbZ/KZp/UFslYf6X0wUzmsve5c13oV8kprLvZTGRq4WeMOB97ZSP6Efghjd8T61DH/GRN5uGdnQtU+Waq0Yc5eNQrW1CXegBMuoB+duA+CauxH+eeCxi/+jaxLl0vhm0fDN+ij5DuTXi8grId6yptBffDy5kF9CERHmH+IxqPN15E3ckUzCNUsglqeBdUrnPbTt4VvmbU+R5296MOTMXvOS/3+pzBoPoQ+rKxAfv48pg4Oj2zyxa8Wfoj1uPlFvAuGS36a39ET/R7HefmvO/exydpoLmc8k2TDahXadlzbq93829vtN6NI699bz/qO1pRF4F6JrKF8vyRMorVD5A3h5+mvMLGg5Yi1n960pEaECUVGD1e4Xwf1fOGM/CPgvww1s/HVyEvw31gruF8+eO4x+q4UnHE7S1fdN0zDfr7AO+X39eMvgadRf1bTfDEZRDzAnCOvFKH/Pf7iVxCPvtN+typav0W6ZpP1rLXLPsW+z7fSFTkt8HfCD/zKvZrn0RfmBvoL1Ofgfk7i8SdHLwT+0aOqMoS0N+4y1TvLIePK8X75LPx/8rsxX75MviFnyuRv5GOeXoUYtutYcNIbrS0+6DH62fBO2bunyFyJy6hL814F4ypDPH7NahbU4P8uhzEhq2sw+2dKRZtiTER2+afsvc/dpiVwnbeTTrdsFWq0h1zdhVEShW9J0azzRFSp8bWp9KESXeuG8dTdE9LKUHKX2pL5ZKgXTPUbfCXQiyLe5qyvKT6sYeFo9pQqajC7V3n9u6Cd7DJ7R36n/c7eB3Pw5tRBe8PNnhvu73/AEmpJis=AQAAAAAAAAAAgAAAAAAAAKgVAAAAAAAASA8AAAAAAAA=eF5V13lYztn/x/Ey1TRkaQ+pJElChRQ3rzuS9k0pRfvOyCiFwhAZ0kJKaFWqKe2LVFosRZv2Eu1alLJ8CSl+M59zrutnzj/n7/O4ntd5n/NxQipN1fcy2KJB+4/ZyqLpKK/Sr+UTqM0/xHtk/WVs3VYQ/4pbFpvEHS9EnBtH4eShwadOoZDb+YS1Z0YGYo5NLm5SY3C2dTSL3RKMoGrenDrLZYgN4zcVGhjBHeHz/D5jFyHUoKaVuWkpRCScXke9HMLBHzlHNvCcx50p3eK2o0uwdTX76iGxQbwey8h5VXwGB+NL736YEsUlR/85xTEDuCKS+SbZ0Q9DbpHaYgoCKPqY98c7r348lTw1IzHbE1G6w5uEbXiRxPqzwiOmD9bmJ76KiznAWc3f5PuhL1uLy8rTJZf0gePfZeTF+neT3VdZctihI2/8fS/yZH8R998XjZAMH1jXKEP28wfBxvsTMFt4cJ3DYBSu7Qiy9jupDPW9+vXs0+OomXbK6Q+4CZMUJRW5GCW8c7NqEhAbw4eMwAt6+67j0Xbry883K+JTV8wi0/YRpNyLctYIiUC5iGBCRK8CdhXfFl5TP4STzfF2sjvDsNq/t3Vduhy6/M548PMO4pm7rO1xixDs4NIwaJsvg+T0s1qCQQNQlbhz6kHJeUys3PWLv70EeET0q87Y9yMptsQjrPEUHtVU3zbfJwQVvQVy1wL78G1LQprzkAcUNG3K09y5EM9+GCw8mzqUx5X8uxkYTpeID3Vfa+3+fweBjUcZh95J4iC9iDg8dg1kHGSpQwqnM+OQsJ7NOIi5EweHNOJw5oYV4yDWTRwEiojDkz/mMw5s6hBDHSpViUMbdVjqQRzaPHYyDpHUYe4K4lA/z5BxEKIOE9HEYf6NGsZBnzo8USYOzfVWjEPkzw4NSUwPNrlfSiSoQ8dKv7vRXml4NBDR4X1FHXPlTimfK5zA2WrH3gecabD3uen8UUsdTcqiAX3e4whui9Iwyv0buR5KqUOH2bhn5J8jxzWG6/NdJuffTobL6lnXVmtsxVXtXDvz4hGI2xvNejGTiB9p2WkPuzdB4dnywrG0IVgcE3PxH44HX25sruiYCnj6Ai0t+l7h+AX7iN750fi8U2JpxnVluPMc6fdyGIDUsvzq71/D0S5lEeG/VAFaLYKZShv7ETURaOfwexAUhRt9zrdKw3btagkHmz7oOBUW1PiegOwiCJV3C+C4Zl+AX1cvcXiSzvTgsuQ564P46WGpnF6EryAOvN7hjMPQCuKwoIY4KP2IZhweUwfRduKw0n4t45BHHbIWUIfBHxH/OoRRh1o74qCZlMs4sKlD0XHiEJxPHOZSB5VA4tD5WZxx8KUO6dLEYZuEGeNgRh3WjROHR3pNjMMe6jCbOkifJw6+PzvE32R6WJ5Sz+JdQhwEL/+oEerKg8guvfZneTr4PnvBvSOZE7B5yBHyx5k83N9amVfN1oGAi+TnVU7juGhfmO/lmwvdxtc8cu+0YBZcnLCzfxS/+EnoWPVmY/3LyrMTfZpIFDleOR04AufmsYKIxEx4Dk/mXGJrYKQxS8/s8BCuyepfyB5OxbLNy012qKqDN3DBo5y4Vwibm7tge+VtrLXWnqvbsxkrn7ny7pcYAFfwIa2/fo+DUElA1bZfN+B3JSmje2/7kHSwSHnoUzje5cSa7xBXQI+g3NNSkT6IFnbOfJg6B31OI4USaXH0LdjCaXuVOshnMT0Y6YezznFxuQ259sL7CnHo/04cNs4hDl8qiMP0DeIgRR3eUQfbOOJgSh0qfYnDqeYnjMNd6hDdQhy8LD8zDtxNxMFahjjYXZJhHESpgzd1yA7TYhz4qcPCEOIQpnn+Pw4B1KHTnTh8og7TBcSBfdKYcej/2cEgnukh7nQJK5Q6xOmVvRgsKIF3Xpl6sa0Jorzg8DJ+Ao6xWSplyiWwFRJ4I8tnAg59A/90nXGML/MUvZhfhIhNVnWrxIxR/+vw68HMUUReus3z0aUQoWJuIbe3GMJjyl1FWfOf++G6Xm36qXxIfHKLeX9WF4uavF2sJIbw9eL/mqeUclC1fibHTWcnkk3lpDy3v8Jv0hLBrabpEM4vdWl4vA2vWC4GTcX9sHQ/wJk7Lwkdj5VEuFgsvPaOyfS72IcNscvT+92jMW/+JpfxZmVYXI528s7qxZrKUHUllyAYxNgahTZKg8tT16xuNXVoID2wDa+VqO28Yqg9qxeR1OHHUCnjUORJHBrjiEPpBD/jUKtHHGbLEAfpDZaMAy8vcciiDhveuzIO/tSBjzoorHBnHLipw5cLxKEpappxSKUOsVLEof8mcRDcQhzi9hMHx1nKjMMYdbCkDruliYMedeCgDjOFNowD788OOrFMD9tiS1h61CGJ18bDs/IBRl7e3O3Na4GFtrXzDwRPIO/R01Vurg+gOV3LFgk1B1d/+EmO5eNYkRE4775VBTD/78cKqrsxuapoy4TrKPh0/EodAsowFRVYoLraFMY7hLeoDw7DYN9078GrxdiaYvemOckYeZctZSPSBqGwZHOYlNJdLGzdmF+ZqQ+OTleH2ZUDULOIvOJ7LQflHLO0zGt34pgMZ7eIWj+UnykUGXekQXCkuUKzSR3afsl8D7n7sGuUX97X/xaSL2e+K8nZCM1QUetDq3ohsuzH5cmjV2A2ym+geXsFKquS2/lNeoiDQjbTg4V4BSt/euL+nm/dOPwrcSh8EMU4lNoQB99K4uDWQRy6+4jDXurwzDWFcXhJHWqpw5NA4uBIHWb2EoeABuIQTx2uSBCHC+eIAw91aDMnDgbKxCGaOtjXE4fceuJgQh1CqMNbc+KgSx1CqIPmQQHGofVnB9YNpgf2Bh/WE+ogeCJ8KnOgCi3OxurmV60R3+Sl3n54AuWVv/Ec2FuFz5PF35WG92G/98KxH2/fQOmCbmBPz2N8U+6KFeTYiy7JRyKRPKN4F9C50SL9IVTe6y7iUtyD0BvD9Q12w/ggrJftw1eB1HfOznlNZgi4M29WruAgTNcmd849WIJK9XZpcWUT/NZiVdCybACNe1IVZ24VQCXxiH7rVz2oJt0yXxfWh/Jp710PurJw4PbokdGIHQi6+ObtI5te8LprKbXsScKQxkf7tVEsjB4Xnvljbg+Gp+e8L1KPwDwdD9/dJxRQmmK6Y9WcbuJQS3qIXJvLkkp9VeuZ34WjfsThwBbiwG4mDiGPiQPPW+JwjDocpA4N5sShlDqUUYdWPj3GIZw6vKQOzwqJgy91kFYkDnOW/9fhA3UYPU8c1KhDJXVYsI84XKcOwW7EwWjBJ8Zhni9xsKIOatrEofxnBxMyL7K0w0oUqMOxlerJdtz1SKzS6alXccCDswHC1ToTUKmW8zRSrYP7qoqLIbn2+OL40J4v8Q3kDddf3zunBh53lJ0WGtqBc+8anZUnXmNNw2Eun6kqLLQu3nwq2xpnXcM1XbKGcKvap0zo9CPYVaar8MES/a2FzZwGr9BkuUVdYKwcU+e2VXxMNsMDyVVL9Mz7MZWa/lqguAjcjiLXCxYbQ05i8e9zq3rB7bOVW7g+F59EpQfG9mhjj4f+Ls41PdCI47ibuDwVl7P3igmWsLF4qX1boH8XZLgSvq76dh1sBSPDV3GKuFh00rg94CVx6L3D9PDnxyyW9Ik6G+l1L2EkTxwEyohDFHX48pQ4RC4lDuJOxEGDOnRWEgcJ6iBEHVZoEofT1EGmhjgkphKHCerQTx1qw4lDM3VQTCMOBX7EQZE65FCHRH3iYEsdqqmDijdxUKIOV38hDjAhDqk/O2jGMT0cMg5jbaIOfEvF7Nu7mnCU3S7vIusKrgTXZAO+CcjI633WVGnCjIfem9eGLqhDRPJJpTewSa0y5/ZtADf/THuAmBP2xYsUL707glkHnaxP36jFCbNUjRADe3gfO9qxtWwQgwu4V27nfwKv3qrS9HprKBiqNz43HEDTMje5a3EPIVSakpkluQeFEbkD7y37sGnSZWZ+RSka4Bs0nrELT1mTz+wTe+Bc55WanVwALVuW8IsfenAv1S85ZtaFfWnG9otq0+G9WYFfVmA7bOfa+sbee4GzQZVVYYHRuKQ2Xv98RBlZV70yvCs76fshh+mBQ/2vkiTtLP153p2YTR009YjD/24RB03qoHiWOGRQBz/qIPB9mnFgUwd56sBhRRyCqYMuP3EQaSUOitThOXU4EE4cMqiDLHXQWEwchqlDKXUY3E8cDlCHMupQt4M4WFOH95eIw7rlxCH3ZweLZKaHP9M9Wfepg+Sdr8KnvTqQIjHtVqDvgcdBRalqCeP42ryhYX12G6QDPinw8v2OzJU39yUcHsOgbavburxmLNzc3lyt6gavW0tlk/4axibD8l9W/d0A64TvHZG7nHCm/YPjBp9XiBvovDMaUoMOszvjbxPs4PBQTfP8/H4kls1zEFGthHTG0bjvh/bCoDPCZMk/806yK2Mre0cFDt5OrHdYvBtVXTFZxS5deJJ7wJTP8B5k3TkSipSNwE7eEsfe+ALXIn70SkZkIWCluo/q5h24tFs9xSLn+T9zcCR1nnscXFzu8jbM2gDpc+u5Tes6iIMt+W9y8LizAtJahjJPd6A+jTjsffqNceANJg511KE6lji8pA6t1IFPhzgcpg4G1GEknThEUwc+6lDkShyMqUMMdVgUShy2UofF1OFUEnF4Rx2OUIc3u4nDTupwlToIrPuvQ5sfcThpRhwUf3bgTWB6kNp1mnWTOhipdTk79bzAOr3jGvVtf+BZdaLdLO03sM7NbpmUfw7X9sJDtxYfgsqis43mja9h8u1PlY2WrahG7rYZ0/2Y7n7RIp47iJTbN0IaWxrBm18Ys7LZGd2nH9VLPu3HEe2Q4ortdTjG8rToL7LH8XaZEe0LvSgZC1pT6FMFw7n3pZfNtoaovHFocGgXzkkuceVf/QD2v55ZLqVhjqHfLuYuetmJZNUjXq5XipByqj4jk9MYfhtUwu06/jlX9ncfeYdsVGuI/p2hrompt/GbJTzb0cH7UUJeKR73KnXT0jlV8CNjfcFEXBtxiMtketAab2R5yE/eumjVBgfqUG5FHPhqiIMFdXDvIA4s6vBxijhEqhAHjh7i4EsdNt0kDhPUga1FHCy3E4fD1KGbOhyWIA4O1OESdWiRJQ58s4nD243EodCTOARQhy9ZxMFhMXGQeUccnlCHb4PEQSrzJ4fey0wPiu51rADq8H/QK+osAQAAAAAAAAAAgAAAAAAAADgHAAAAAAAAhgQAAAAAAAA=eF5d1flP0wccxnEqjltWjGNVIBzOAxkZG44OQZ5xeQURNmCTgvEAhuCBzJGJcZlTQDwAy1x11jkOAXFRkVMb5KptgQ6hYIGi0BYrAxUF48FAmImf1Oz7/AGvPL+9Q0Lyq0y4D3C+NKy1a+Eg1Acalh/eoMb2zUc6dTv7oH22X3OmVIlTGRN+qjUKxOSIr/XulWNkLHNt2oAYM7HL18q3iLDwfH3GFdtLMKBFC4MyLZwfwNfu4Aor60EMZRZMxPqpYcsOyKgI7wN3dGcl+5QSn9xi6XZ5KPCwvzdAHSGH+Rl5VJtMjLjvvigL9xdBoBQcd5ou1bs8cv3JfUQuh1wPhjtO7ofkRpPLZ7iXykrKLEzeuNL4idPPtbimSnLbt1ANz12GgSLbPkROnzHavlWJ2oNLZM7mCrCvRG86xpbjRsxYcXauGPKk+D3/Tt7AaynL4mzVO7eE3ACGC3J5DHcOuRXk3iLXVPZ/N+kH1ku3Dh2OFAd9eqFOCx/ei29C1AN4pB16vPmmCsu+4pvUWCpRx+uK72nqwLzP78/RCFux8ZLj9BJvMbyDJ1kGGTdQudOoJMn3nbuX4fqTO0yuC7k15FqQG0euJ7llDDepYqkk7RcdJnn5ThHJWlisix3jrx+Ap03l0DBXBf8gYz+d4A74rvbHXm3qgMBR1N410QJhdFr3moYmXAyd66TVXkee+QjH79xFvRtH7uyot64VuT7kgtw/yD1B7ilyC8m9zHDH9g1zE+fr8NQ03MPV/M1f9xbl7qP9WDdL4jCZ1ouKA1ljRya7MCPNCxhXtWMqaGpi96IW3E5+30fh2IQUz/S/9lpeh3LbuGBec4ne/YfcUXLnMtxqcs1kb90ZcuXk/kiuguHGRba4u/PvIyKwZ1V1ugb5NbXe7ifvwb5sciSmsAfyVGnVgEcXbHZkh9h5tKOJM2CptWuGsYMhrz+qEUKH0oQnJjVodBwpiBIX690d5AaRW0CuDblt5NqSKyGXTe5ZckUMd7/B1sT8oUGc25h3e4laDZH5xQ++j7wL1lI3G2R146HGKNd6dSeK9sg3Wve3gRXw0PepRorQxXZC8+QGpMpaVYGKKvzWYlYenF2kd38i909ya8mdRe5jci+TO4vcMHLTyM1luPa6ztBRq0F4eln7lrPVqL6a6HrvrgrrhBHc4z5KOPzstfKlswKmkkCpodnfSAkbis7dI0HI6sEv726pRw572SJ+YiUkxicKfVwu6N0F5C4nt4rcYHI55FqSm0xuELlZ5MoY7q/bPt5fNFuL1tI44z6bfpQMr+desOxFvOHiV9NlXbgzYe/3or8dqQnVoS5jLXgdIO3LaxPDrvaJdnHUTWQk5CSkdJcjMJNt/+z3Ar0rIFdCbiG5MeQ2k3uY3ClyrcnNIncVwz30eMV2zXk1inVhi7IFfbhu6MsxeqRE9/iU8NDwmz68xzlW196G+UYp5bGnZTB7Hh369etGmHVcXTlcLoJXXdPJbxdcw2fhLhvuaPP0bjq5BeTWk9tD7gtyPyLXmFwOuf7kejDc/wDW0EItAQAAAAAAAAAAgAAAAAAAAJABAAAAAAAADgAAAAAAAAA=eF5jYBgFgwkAAAGQAAE=AQAAAAAAAAAAgAAAAAAAAKgVAAAAAAAAKgMAAAAAAAA=eF6Nlj1rlEEUhd9GQTt/gLY2VloIFo5WfrRpLAyIEO3EUrQREQwSIfiFiq2Vrc3+hMFEhAVhqowMBAYCTm0hkmTPLHPOveJtlveZu+fse7g7M9P0f/Xh/X7Ngs2j8HMHNXf6k/DDyo5OEX7noHYd/Sp8e2u/9hzfFv79fkuOZ5tH4cjB7k+Ob3Z0inDkYOtX4cjB9m1h5/ipE9ffzcJKPnnx6O1bfZ05vm/zKBw52P3J8c2OThGOHGz9Khw52L6tv8dExXycB+ZR+DgP3J8c3+zoFOHjPLB+FT7OA/tiHuIin/s0D0s+zgPzKHycB+5Pjm92dIrwcR5Yvwof54F9W/+9ExVz5GDzKBzPdn9yfLOjU4QjB1u/CkcOtm8Lp9d/bJw/Ow+Pvp9ZPfbqQV9njhxsHoXDz+5Pjm92dIpw5GDrV+HIwfZt/XdNVMzH/YF5FI4c7P7k+GZHpwgf9wfWr8LH/YF9sT+kxf/lMe0PSz7uD8yjcORg9yfHNzs6Rfi4P7B+FT7uD+zbuv9kVqacZ9KPHJiP/0PuT8LHZ9YpwpEDc+TAfLxHsW8Lb1+svbn5ZyfcvfFp+9nDp32dOXKweRSOHOz+5PhmR6cIRw62fhWOHGzf1n0mKubIweZROHKw+5Pjmx2dInw8L1i/Ch/PC/bFeVEW++d6X2eOHGwehR/6zZ3+5PhmR6cIH88L1q/Cx/OCfVvXm6iYIwebR+HIwe5Pjm92dIpwPNv6VThysH1beHLt97dLa7th8+qXveefN/o6c+Rg8ygcOdj9yfHNjk4Rjvex9atw5GD7tv69iYo5crB5FI4c7P7k+GZHpwhHDrZ+FT7eH9gX94e6OE83+zpz5GDzKBw52P3J8c2OThGOHGz9Kny8P7BvC+O5uizmyMHmUThysPuT45sdnSIcOdj6VTiebd8WLmxdXln5uhdWP/48cuXey77OHDnYPApHDnZ/cnyzo1OEIwdbvwrH+9u+jT65GuU8k37kwBw52P1J+GFlR6cIH/d91q/CxzlgX9wnfy3uV6/7OnPkYPMoHDnY/cnxzY5OEY4cbP0qfLxPsm8LfwGHmV77AQAAAAAAAAAAgAAAAAAAAGAYAAAAAAAAnAMAAAAAAAA=eF6F0te7yAUcx3FJJHvUoWS1SMNOIidFRmUnhU6FSFtDQ46VRLQU2YVoiEpLciRCSprSQKq/w0Xv90U9z+/5fG9ed5+b77uk0r93AtbE0yr992pgI6yMtbAE/7/TGE/E2li0czpWwTpYtHMGnoR1sWinCVbFeli0cyZWw/pYtNMUT8YGWLTTDKtjQyzaaY6n4KlYtOMf/M+F2BL9q/++AFugf/FfF+FZmPb9k/+7GM/GtO/f/GdbPAfTvn/0v+3wXEz7/tV/t8fzMO37Z//fAVth2vfv9tARW2PatwP76ITnY9q3r+bYGdtg2rcDu7gSu6Cd2V1PvATtwC6uwksx7duBXfTCrpj27cAueuNlmPbtwC6uxm6Y9u3ALvpgd0z7dmAXffFyTPt2YBf9sAemfTuwi/5YimnfzuzuGrwC074d2MUIvA7tzO5uwGvRDuziRhyAad8O7OImHIhp3w7sYiQOwrRvB3YxCgdj2rcDuxiNQzDt24Fd3IxDMe3bgV2U4TBM+6VoF7fg9Zj27czubsXhWIpF+3ZgF/fgGLQzu7sbb0M7sIt7cSymfTuwi/twHKZ9O7CL+/F2TPt2YBeTcDymfTuwiwdwAqZ9O7CLB/EOTPt2UIYP4URM+3ZgFw/jnZj27czuJuNdmPbtwC5m4aNoZ3Y3Ex9BO7CLJ/ExTPt2YBez8XFM+3ZgF0/hFEz7dmAXc/AJTPt2YBdP41RM+3ZgF3OxHNO+HdjFPJyGad8O7OIZnI5p387sbj7OwLRvB3axBJ9FO7O7V3AB2oFdLMXnMO3bgV0sw+cx7duBXSzHFzDt24FdrMAXMe3bgV2sxIWY9svRLlbhS5j27cAuXsWXsRyL9u3ALl7DRZj27czuVuNiTPt2YBebcC3amd1txDVoB3bxLr6Oad8O7OI9XIdp3w7s4n1cj2nfDuxiM76Bad8OVuIH+CamfTuwiw/xLUz7dmAXH+HbmPbtwC4+xg2Y9u3M7j7BdzDt24FdfImfop3Z3S7cgnZgF7txK6Z9O7CLPfgZpn07sIu9uA3Tvh3YxVdYgWnfDuxiH27HtG8HdvE1fo5p3w7s4hvcgWnfDuxiP36Bad/O7O5b3Ilp3w7s4nf8Du3M7n7DA2gHdvEHfo9p3w7s4jD+gGnfDuziCP6Iab8C7eIo/oRp3w7s4k/8GSuwaN8O7OIYHsS0bwd28Rf+gmnfDuzibzyEad/O7O4f/BXT/nFuhFa4AQAAAAAAAAAAgAAAAAAAACADAAAAAAAAsQAAAAAAAAA=eF4txRuQhAAAAND7NEfRzcLBzlF0s3CwcxSGYRguLoZhGIZhGIZhuBiGYbgYHPSevI+XQ+hPf/nbkX/86z/HTpw6c+6b7y5cunLtxq079x48evLDsxev3vz07uD1OPTJZ0e++OrYiVNnzn3z3YVLV67duHXn3oNHT3549uLVm5/eHbwdhz757MgXXx07cerMuW++u3DpyrUbt+7ce/DoyQ/PXrx689O7g/fj0P8BDTDBAQAAAAAAAAAAgAAAAAAAAGQAAAAAAAAADgAAAAAAAAA=eF7j5YUBHpoBAPDXBLs=
</AppendedData>
</VTKFile>
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment