Skip to content
Snippets Groups Projects
Commit b13d1b03 authored by Feliks Kiszkurno's avatar Feliks Kiszkurno Committed by Dmitri Naumov
Browse files

Fixing latex equation and formatting

parent ea754d3d
No related branches found
No related tags found
No related merge requests found
......@@ -123,11 +123,11 @@ def time_function(t_D):
The Prandtl and Reynolds number can be calculated as follows
$$
Pr = \frac{\mu_f c_{p,f}}{\lambda_f}
\mathrm{Pr} = \frac{\mu_f c_{p,f}}{\lambda_f}
$$
$$
Re = \frac{\rho_f v d_{pi}}{\mu_f}
\mathrm{Re} = \frac{\rho_f v d_{pi}}{\mu_f}
$$
where, $\mu_f, \rho_f$ and $\lambda_f$ is the fluid viscosity, density and thermal conductivity.
......@@ -145,15 +145,17 @@ Re = rho_f * v * (2 * r_pi) / mu_f
The Nusselt number can be determined by the following equation (Diersch, 2013):
$$
Nu = 4.364,\ Re < 2300
\mathrm{Nu} = 4.364,\ \mathrm{Re} < 2300
$$
$$
Nu = \frac{(\xi_{k}/8)\ \mathrm{Re}_{k}\ \mathrm{Pr}}{1+12.7\sqrt{\xi_{k}/8}(\mathrm{Pr}^{2/3}-1)} \left[ 1+\left(\frac{d_{k}^{i}}{L}\right)^{2/3} \right],\ Re \geq 10^4
\mathrm{Nu} = \frac{(\xi_{k}/8)\ \mathrm{Re}_{k}\ \mathrm{Pr}}{1+12.7\sqrt{{\xi_k}/8}(\mathrm{Pr}^{2/3}-1)} [ 1+(\frac{{d_k}^{i}}{L})^{2/3}], Re \geq 10^4
$$
$$
Nu = (1-\gamma_{k})\ 4.364 + \gamma_{k} ( \frac{(0.0308/8)10^{4}\mathrm{Pr}}{1+12.7\ \sqrt{0.0308/8}(\mathrm{Pr}^{2/3}-1)} \left[ 1+\left(\frac{d_{k}^{i}}{L}\right)^{2/3} \right] ), 2 300 \leq Re < 10^{4}
$$
\mathrm{Nu} = (1-\gamma_{k})\ 4.364 + \gamma_{k} ( \frac{(0.0308/8)10^{4}\mathrm{Pr}}{1+12.7\ \sqrt{0.0308/8}(\mathrm{Pr}^{2/3}-1)} \left[ 1+\left(\frac{d_{k}^{i}}{L}\right)^{2/3} \right] ), 2 300 \leq \mathrm{Re} < 10^{4}
$$
with
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment