Newer
Older
* Copyright (c) 2012-2024, OpenGeoSys Community (http://www.opengeosys.org)
* Distributed under a Modified BSD License.
* See accompanying file LICENSE.txt or
* http://www.opengeosys.org/project/license
*
*/
#include <gmock/gmock-matchers.h>
#include <gtest/gtest.h>
#include <numeric>
#include <random>
#include "MeshToolsLib/MeshGenerators/MeshGenerator.h"
#include "ProcessLib/Output/CellAverageData.h"
#include "ProcessLib/Reflection/ReflectionForIPWriters.h"
#include "ProcessLib/Reflection/ReflectionIPData.h"
#include "ProcessLib/Reflection/ReflectionSetIPData.h"
template <int Dim>
struct Level3
{
MathLib::KelvinVector::KelvinVectorType<Dim> kelvin3;
Eigen::Vector<double, Dim> vector3;
double scalar3;
Eigen::Matrix<double, Dim, 4, Eigen::RowMajor> matrix3;
Eigen::Matrix<double, 4, Dim, Eigen::RowMajor> matrix3_1;
// Same number of components as Kelvin vector in 2D. Test that Kelvin vector
// and matrix code are not mixed up.
Eigen::Matrix<double, 2, 2, Eigen::RowMajor> matrix3_2;
static auto reflect()
{
using namespace ProcessLib::Reflection;
return std::tuple{makeReflectionData("kelvin3", &Level3::kelvin3),
makeReflectionData("vector3", &Level3::vector3),
makeReflectionData("scalar3", &Level3::scalar3),
makeReflectionData("matrix3", &Level3::matrix3),
makeReflectionData("matrix3_1", &Level3::matrix3_1),
makeReflectionData("matrix3_2", &Level3::matrix3_2)};
}
};
template <int Dim>
struct Level3b
{
double scalar3b;
static auto reflect()
{
using namespace ProcessLib::Reflection;
return std::tuple{makeReflectionData("scalar3b", &Level3b::scalar3b)};
using Level2 = std::tuple<Level3<Dim>, Level3b<Dim>>;
template <int Dim>
struct Level2b
{
double scalar2b;
static auto reflect()
{
using namespace ProcessLib::Reflection;
return std::tuple{makeReflectionData("scalar2b", &Level2b::scalar2b)};
}
};
template <int Dim>
struct Level1
{
MathLib::KelvinVector::KelvinVectorType<Dim> kelvin1;
Eigen::Vector<double, Dim> vector1;
double scalar1;
Level2<Dim> level2;
Level2b<Dim> level2b;
static auto reflect()
{
using namespace ProcessLib::Reflection;
return std::tuple{makeReflectionData("kelvin1", &Level1::kelvin1),
makeReflectionData("vector1", &Level1::vector1),
makeReflectionData("scalar1", &Level1::scalar1),
makeReflectionData(&Level1::level2),
makeReflectionData(&Level1::level2b)};
}
};
template <int Dim>
struct Level1b
{
double scalar1b;
static auto reflect()
{
using namespace ProcessLib::Reflection;
return std::tuple{makeReflectionData("scalar1b", &Level1b::scalar1b)};
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
}
};
template <int Dim>
struct LocAsmIF
{
explicit LocAsmIF(unsigned const num_ips)
: ip_data_scalar(num_ips),
ip_data_vector(num_ips),
ip_data_kelvin(num_ips),
ip_data_level1(num_ips),
ip_data_level1b(num_ips)
{
}
std::size_t numIPs() const { return ip_data_scalar.size(); }
std::vector<double> ip_data_scalar;
std::vector<Eigen::Vector<double, Dim>> ip_data_vector;
std::vector<MathLib::KelvinVector::KelvinVectorType<Dim>> ip_data_kelvin;
std::vector<Level1<Dim>> ip_data_level1;
std::vector<Level1b<Dim>> ip_data_level1b;
static auto reflect()
{
using namespace ProcessLib::Reflection;
return std::tuple{
makeReflectionData("scalar", &LocAsmIF::ip_data_scalar),
makeReflectionData("vector", &LocAsmIF::ip_data_vector),
makeReflectionData("kelvin", &LocAsmIF::ip_data_kelvin),
makeReflectionData(&LocAsmIF::ip_data_level1),
makeReflectionData(&LocAsmIF::ip_data_level1b)};
static auto getReflectionDataForOutput() { return reflect(); }
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
};
template <int dim>
struct NumCompAndFunction
{
unsigned num_comp;
std::function<std::vector<double>(LocAsmIF<dim> const&)> function;
};
// Prepares scalar IP data for the passed local assembler.
//
// The IP data are a sequence of double values starting at the passed start
// value and incremented by one for each integration point.
//
// The location of the prepared data is specified by the IP data accessor
// callback function.
//
// Returns the expected data for use in unit test checks.
template <int dim>
std::vector<double> initScalar(LocAsmIF<dim>& loc_asm,
double const start_value,
auto const ip_data_accessor,
bool const for_read_test)
{
auto const num_int_pts = loc_asm.numIPs();
// init ip data in the local assembler
if (for_read_test)
{
for (std::size_t ip = 0; ip < num_int_pts; ++ip)
{
ip_data_accessor(loc_asm, ip) = start_value + ip;
}
}
else
{
for (std::size_t ip = 0; ip < num_int_pts; ++ip)
{
ip_data_accessor(loc_asm, ip) =
std::numeric_limits<double>::quiet_NaN();
}
}
// prepare reference data
std::vector<double> scalar_expected(num_int_pts);
iota(begin(scalar_expected), end(scalar_expected), start_value);
return scalar_expected;
}
// Prepares vector valued IP data for the passed local assembler.
//
// The IP data are a sequence of double values starting at the passed start
// value and incremented by one for each integration point and vector
// component.
//
// The location of the prepared data is specified by the IP data accessor
// callback function.
//
// Returns the expected data for use in unit test checks.
template <int dim>
std::vector<double> initVector(LocAsmIF<dim>& loc_asm,
double const start_value,
auto const ip_data_accessor,
bool const for_read_test)
{
auto const num_int_pts = loc_asm.numIPs();
// init ip data in the local assembler
if (for_read_test)
{
for (std::size_t ip = 0; ip < num_int_pts; ++ip)
{
ip_data_accessor(loc_asm, ip) =
Eigen::Vector<double, dim>::LinSpaced(
dim, ip * dim + start_value,
ip * dim + start_value - 1 + dim);
}
}
else
{
for (std::size_t ip = 0; ip < num_int_pts; ++ip)
{
ip_data_accessor(loc_asm, ip) =
Eigen::Vector<double, dim>::Constant(
std::numeric_limits<double>::quiet_NaN());
}
}
// prepare reference data
std::vector<double> vector_expected(num_int_pts * dim);
iota(begin(vector_expected), end(vector_expected), start_value);
return vector_expected;
}
// Prepares Kelvin vector valued IP data for the passed local assembler.
//
// The IP data are a sequence of double values starting at the passed start
// value and incremented by one for each integration point and Kelvin vector
// component.
//
// The location of the prepared data is specified by the IP data accessor
// callback function.
//
// Returns the expected data for use in unit test checks.
template <int dim>
std::vector<double> initKelvin(LocAsmIF<dim>& loc_asm,
double const start_value,
auto const ip_data_accessor,
bool const for_read_test)
{
auto constexpr kv_size =
MathLib::KelvinVector::kelvin_vector_dimensions(dim);
auto const num_int_pts = loc_asm.numIPs();
// init ip data in the local assembler
if (for_read_test)
{
for (std::size_t ip = 0; ip < num_int_pts; ++ip)
{
ip_data_accessor(loc_asm, ip) =
// the local assembler stores Kelvin vector data...
MathLib::KelvinVector::symmetricTensorToKelvinVector(
Eigen::Vector<double, kv_size>::LinSpaced(
kv_size, ip * kv_size + start_value,
ip * kv_size + start_value - 1 + kv_size));
}
}
else
{
for (std::size_t ip = 0; ip < num_int_pts; ++ip)
{
ip_data_accessor(loc_asm, ip) =
Eigen::Vector<double, kv_size>::Constant(
std::numeric_limits<double>::quiet_NaN());
}
}
// prepare reference data
// ... the reference data used in the tests is not Kelvin-mapped!
std::vector<double> vector_expected(num_int_pts * kv_size);
iota(begin(vector_expected), end(vector_expected), start_value);
return vector_expected;
}
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
// Prepares matrix valued IP data for the passed local assembler.
//
// The IP data are a sequence of double values starting at the passed start
// value and incremented by one for each integration point and matrix entry.
//
// The location of the prepared data is specified by the IP data accessor
// callback function.
//
// Returns the expected data for use in unit test checks.
template <int dim>
std::vector<double> initMatrix(LocAsmIF<dim>& loc_asm,
double const start_value,
auto const ip_data_accessor,
bool const for_read_test)
{
using MatrixType = std::remove_cvref_t<
std::invoke_result_t<std::remove_cvref_t<decltype(ip_data_accessor)>,
LocAsmIF<dim> const&, unsigned /* ip */>>;
auto constexpr rows = MatrixType::RowsAtCompileTime;
auto constexpr cols = MatrixType::ColsAtCompileTime;
auto constexpr size = rows * cols;
auto const num_int_pts = loc_asm.numIPs();
// init ip data in the local assembler
if (for_read_test)
{
for (std::size_t ip = 0; ip < num_int_pts; ++ip)
{
ip_data_accessor(loc_asm, ip) =
Eigen::Vector<double, size>::LinSpaced(
size, ip * size + start_value,
ip * size + start_value - 1 + size)
.template reshaped<Eigen::RowMajor>(rows, cols);
}
}
else
{
for (std::size_t ip = 0; ip < num_int_pts; ++ip)
{
ip_data_accessor(loc_asm, ip) =
Eigen::Vector<double, size>::Constant(
std::numeric_limits<double>::quiet_NaN())
.template reshaped<Eigen::RowMajor>(rows, cols);
}
}
// prepare reference data
std::vector<double> vector_expected(num_int_pts * size);
iota(begin(vector_expected), end(vector_expected), start_value);
return vector_expected;
}
template <int dim>
struct ReferenceData
{
private:
ReferenceData() = default;
public:
std::vector<double> scalar;
std::vector<double> vector;
std::vector<double> kelvin;
std::vector<double> scalar1;
std::vector<double> vector1;
std::vector<double> kelvin1;
std::vector<double> scalar3;
std::vector<double> vector3;
std::vector<double> kelvin3;
std::vector<double> matrix3;
std::vector<double> matrix3_1;
std::vector<double> matrix3_2;
std::vector<double> scalar1b;
std::vector<double> scalar2b;
std::vector<double> scalar3b;
// Computes reference data and initializes the internal (integration point)
// data of the passed \c loc_asm.
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
static ReferenceData<dim> create(LocAsmIF<dim>& loc_asm,
bool const for_read_test)
{
std::random_device ran_dev;
std::mt19937 ran_gen(ran_dev());
std::uniform_real_distribution<> ran_dist(1.0, 2.0);
auto start_value = [&]() { return ran_dist(ran_gen); };
ReferenceData<dim> ref;
// level 0 - data preparation //////////////////////////////////////////
ref.scalar = initScalar(
loc_asm, start_value(),
[](auto& loc_asm, unsigned const ip) -> auto& {
return loc_asm.ip_data_scalar[ip];
},
for_read_test);
ref.vector = initVector(
loc_asm, start_value(),
[](auto& loc_asm, unsigned const ip) -> auto& {
return loc_asm.ip_data_vector[ip];
},
for_read_test);
ref.kelvin = initKelvin(
loc_asm, start_value(),
[](auto& loc_asm, unsigned const ip) -> auto& {
return loc_asm.ip_data_kelvin[ip];
},
for_read_test);
// level 1 - data preparation //////////////////////////////////////////
ref.scalar1 = initScalar(
loc_asm, start_value(),
[](auto& loc_asm, unsigned const ip) -> auto& {
return loc_asm.ip_data_level1[ip].scalar1;
},
for_read_test);
ref.vector1 = initVector(
loc_asm, start_value(),
[](auto& loc_asm, unsigned const ip) -> auto& {
return loc_asm.ip_data_level1[ip].vector1;
},
for_read_test);
ref.kelvin1 = initKelvin(
loc_asm, start_value(),
[](auto& loc_asm, unsigned const ip) -> auto& {
return loc_asm.ip_data_level1[ip].kelvin1;
},
for_read_test);
// level 3 - data preparation //////////////////////////////////////////
ref.scalar3 = initScalar(
loc_asm, start_value(),
[](auto& loc_asm, unsigned const ip) -> auto& {
return std::get<Level3<dim>>(loc_asm.ip_data_level1[ip].level2)
.scalar3;
},
for_read_test);
ref.vector3 = initVector(
loc_asm, start_value(),
[](auto& loc_asm, unsigned const ip) -> auto& {
return std::get<Level3<dim>>(loc_asm.ip_data_level1[ip].level2)
.vector3;
},
for_read_test);
ref.kelvin3 = initKelvin(
loc_asm, start_value(),
[](auto& loc_asm, unsigned const ip) -> auto& {
return std::get<Level3<dim>>(loc_asm.ip_data_level1[ip].level2)
.kelvin3;
ref.matrix3 = initMatrix(
loc_asm, start_value(),
[](auto& loc_asm, unsigned const ip) -> auto& {
return std::get<Level3<dim>>(loc_asm.ip_data_level1[ip].level2)
.matrix3;
},
for_read_test);
ref.matrix3_1 = initMatrix(
loc_asm, start_value(),
[](auto& loc_asm, unsigned const ip) -> auto& {
return std::get<Level3<dim>>(loc_asm.ip_data_level1[ip].level2)
.matrix3_1;
},
for_read_test);
ref.matrix3_2 = initMatrix(
loc_asm, start_value(),
[](auto& loc_asm, unsigned const ip) -> auto& {
return std::get<Level3<dim>>(loc_asm.ip_data_level1[ip].level2)
.matrix3_2;
},
for_read_test);
// b levels - data preparation /////////////////////////////////////////
// b levels test that the reflection implementation recurses on multiple
// members, not only on one.
ref.scalar1b = initScalar(
loc_asm, start_value(),
[](auto& loc_asm, unsigned const ip) -> auto& {
return loc_asm.ip_data_level1b[ip].scalar1b;
},
for_read_test);
ref.scalar2b = initScalar(
loc_asm, start_value(),
[](auto& loc_asm, unsigned const ip) -> auto& {
return loc_asm.ip_data_level1[ip].level2b.scalar2b;
},
for_read_test);
ref.scalar3b = initScalar(
loc_asm, start_value(),
[](auto& loc_asm, unsigned const ip) -> auto& {
return std::get<Level3b<dim>>(loc_asm.ip_data_level1[ip].level2)
.scalar3b;
},
for_read_test);
return ref;
}
};
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
template <int dim>
void checkAll(ReferenceData<dim> const& ref, auto&& checker,
bool const check_level_0_data = true)
{
auto constexpr kv_size =
MathLib::KelvinVector::kelvin_vector_dimensions(dim);
// The storage of "level 0 data" (i.e., non-reflected data directly in the
// local assembler, e.g. a std::vector<double> of integration point data of
// a scalar value) is not compatible with the implemented IP data input
// logic. Therefore we don't test level 0 data in that case.
// This incompatibility is not a problem in practice, as such data is not
// used ATM in OGS's local assemblers.
if (check_level_0_data)
{
checker("scalar", 1, ref.scalar);
checker("vector", dim, ref.vector);
checker("kelvin", kv_size, ref.kelvin);
}
// level 1
checker("scalar1", 1, ref.scalar1);
checker("vector1", dim, ref.vector1);
checker("kelvin1", kv_size, ref.kelvin1);
// level 3
checker("scalar3", 1, ref.scalar3);
checker("vector3", dim, ref.vector3);
checker("kelvin3", kv_size, ref.kelvin3);
checker("matrix3", dim * 4, ref.matrix3);
checker("matrix3_1", dim * 4, ref.matrix3_1);
checker("matrix3_2", 4, ref.matrix3_2);
// b levels
checker("scalar1b", 1, ref.scalar1b);
checker("scalar2b", 1, ref.scalar2b);
checker("scalar3b", 1, ref.scalar3b);
}
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
template <class Dim>
struct ProcessLib_ReflectIPData : ::testing::Test
{
static constexpr auto dim = Dim::value;
};
using ProcessLib_ReflectIPData_TestCases =
::testing::Types<std::integral_constant<int, 2>,
std::integral_constant<int, 3>>;
TYPED_TEST_SUITE(ProcessLib_ReflectIPData, ProcessLib_ReflectIPData_TestCases);
TYPED_TEST(ProcessLib_ReflectIPData, ReadTest)
{
constexpr int dim = TypeParam::value;
using LocAsm = LocAsmIF<dim>;
std::size_t const num_int_pts = 8;
LocAsm loc_asm(num_int_pts);
auto const ref = ReferenceData<dim>::create(loc_asm, true);
// function under test /////////////////////////////////////////////////////
std::map<std::string, NumCompAndFunction<dim>>
map_name_to_num_comp_and_function;
ProcessLib::Reflection::forEachReflectedFlattenedIPDataAccessor<dim,
LocAsm>(
LocAsm::reflect(),
[&map_name_to_num_comp_and_function](std::string const& name,
unsigned const num_comp,
auto&& double_vec_from_loc_asm)
{
EXPECT_FALSE(map_name_to_num_comp_and_function.contains(name));
map_name_to_num_comp_and_function[name] = {
num_comp, std::move(double_vec_from_loc_asm)};
});
// checks //////////////////////////////////////////////////////////////////
auto check = [&map_name_to_num_comp_and_function, &loc_asm](
std::string const& name,
unsigned const num_comp_expected,
std::vector<double> const& values_expected)
{
auto const it = map_name_to_num_comp_and_function.find(name);
ASSERT_NE(map_name_to_num_comp_and_function.end(), it)
<< "No accessor found for ip data with name '" << name << "'";
auto const& [num_comp, fct] = it->second;
EXPECT_EQ(num_comp_expected, num_comp)
<< "Number of components differs for ip data with name '" << name
<< "'";
EXPECT_THAT(fct(loc_asm),
testing::Pointwise(testing::DoubleEq(), values_expected))
<< "Values differ for ip data with name '" << name << "'";
};
TYPED_TEST(ProcessLib_ReflectIPData, WriteTest)
{
constexpr int dim = TypeParam::value;
using LocAsm = LocAsmIF<dim>;
std::size_t const num_int_pts = 8;
LocAsm loc_asm(num_int_pts);
auto const ref = ReferenceData<dim>::create(loc_asm, false);
// set up data getters - used for checks ///////////////////////////////////
// that critically relies on the read test above being successful!
std::map<std::string, NumCompAndFunction<dim>>
map_name_to_num_comp_and_function;
ProcessLib::Reflection::forEachReflectedFlattenedIPDataAccessor<dim,
LocAsm>(
LocAsm::reflect(),
[&map_name_to_num_comp_and_function](std::string const& name,
unsigned const num_comp,
auto&& double_vec_from_loc_asm)
{
EXPECT_FALSE(map_name_to_num_comp_and_function.contains(name));
map_name_to_num_comp_and_function[name] = {
num_comp, std::move(double_vec_from_loc_asm)};
});
// checks //////////////////////////////////////////////////////////////////
auto check = [&map_name_to_num_comp_and_function, &loc_asm](
std::string const& name, unsigned const num_comp,
std::vector<double> const& values_plain)
{
auto const it = map_name_to_num_comp_and_function.find(name);
ASSERT_NE(map_name_to_num_comp_and_function.end(), it)
<< "No accessor found for ip data with name '" << name << "'";
auto const& [num_comp_2, fct] = it->second;
// consistency checks
ASSERT_EQ(num_comp, num_comp_2);
ASSERT_EQ(0, values_plain.size() % num_comp);
auto const num_int_pts_expected = values_plain.size() / num_comp;
EXPECT_THAT(fct(loc_asm), testing::Each(testing::IsNan()))
<< "All values must be initialized to NaN in this unit test. Check "
"failed for ip data with name '"
<< name << "'";
// function under test /////////////////////////////////////////////////
auto const num_int_pts_actual =
ProcessLib::Reflection::reflectSetIPData<dim>(
name, values_plain.data(), loc_asm.ip_data_level1);
auto const num_int_pts_actual_1 =
ProcessLib::Reflection::reflectSetIPData<dim>(
name, values_plain.data(), loc_asm.ip_data_level1b);
// end function under test /////////////////////////////////////////////
ASSERT_EQ(num_int_pts_expected, num_int_pts_actual)
<< "Unexpected number of integration points obtained for ip data "
"with name '"
<< name << "'";
ASSERT_EQ(num_int_pts_expected, num_int_pts_actual_1);
// check set values via round-trip with getter tested in previous unit
// test
EXPECT_THAT(fct(loc_asm),
testing::Pointwise(testing::DoubleEq(), values_plain))
<< "Values not set correctly for ip data with name '" << name
<< "'";
};
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
TYPED_TEST(ProcessLib_ReflectIPData, RawDataTypes)
{
constexpr int dim = TypeParam::value;
constexpr int kv_size =
MathLib::KelvinVector::kelvin_vector_dimensions(dim);
namespace PRD = ProcessLib::Reflection::detail;
// scalars
static_assert(PRD::is_raw_data<double>::value);
// vectors
static_assert(PRD::is_raw_data<Eigen::Vector<double, dim>>::value);
static_assert(PRD::is_raw_data<Eigen::RowVector<double, dim>>::value);
// Kelvin vectors
static_assert(PRD::is_raw_data<Eigen::Vector<double, kv_size>>::value);
// matrices
static_assert(PRD::is_raw_data<
Eigen::Matrix<double, dim, dim, Eigen::RowMajor>>::value);
static_assert(PRD::is_raw_data<
Eigen::Matrix<double, dim, kv_size, Eigen::RowMajor>>::value);
static_assert(PRD::is_raw_data<
Eigen::Matrix<double, kv_size, dim, Eigen::RowMajor>>::value);
static_assert(
PRD::is_raw_data<
Eigen::Matrix<double, kv_size, kv_size, Eigen::RowMajor>>::value);
// column major matrices are not supported in order to avoid confusion of
// storage order
static_assert(!PRD::is_raw_data<Eigen::Matrix<double, dim, dim>>::value);
static_assert(
!PRD::is_raw_data<Eigen::Matrix<double, dim, kv_size>>::value);
static_assert(
!PRD::is_raw_data<Eigen::Matrix<double, kv_size, dim>>::value);
static_assert(
!PRD::is_raw_data<Eigen::Matrix<double, kv_size, kv_size>>::value);
}
TYPED_TEST(ProcessLib_ReflectIPData, IPWriterTest)
{
constexpr int dim = TypeParam::value;
using LocAsm = LocAsmIF<dim>;
std::size_t const num_int_pts = 8;
std::vector<std::unique_ptr<LocAsm>> loc_asms;
// emplace...new is a workaround for an MSVC compiler warning:
// C:\Program Files (x86)\Microsoft Visual
// Studio\2019\Community\VC\Tools\MSVC\14.29.30133\include\memory(3382):
// warning C4244: 'argument': conversion from 'const uintptr_t' to 'const
// unsigned int', possible loss of data
// C:/Users/gitlab/gitlab/_b/bg4d5s_d/0/ogs/ogs/Tests/ProcessLib/
// TestReflectIPData.cpp(792):
// note: see reference to function template instantiation
// 'std::unique_ptr<LocAsm,std::default_delete<LocAsm>>
// std::make_unique<LocAsm,const size_t&,0>(const size_t &)' being compiled
loc_asms.emplace_back(new LocAsm{num_int_pts});
std::unique_ptr<MeshLib::Mesh> mesh{
MeshToolsLib::MeshGenerator::generateLineMesh(1.0, 1)};
auto const ref = ReferenceData<dim>::create(*loc_asms.front(), true);
// function under test /////////////////////////////////////////////////////
std::vector<std::unique_ptr<MeshLib::IntegrationPointWriter>>
integration_point_writers;
constexpr int integration_order = 0xc0ffee; // dummy value
ProcessLib::Reflection::addReflectedIntegrationPointWriters<dim>(
LocAsm::getReflectionDataForOutput(), integration_point_writers,
integration_order, loc_asms);
// this finally invokes the IP writers
MeshLib::addIntegrationPointDataToMesh(*mesh, integration_point_writers);
// checks //////////////////////////////////////////////////////////////////
auto check = [&mesh](std::string const& name,
unsigned const num_comp,
std::vector<double> const& values_expected)
{
auto const& props = mesh->getProperties();
ASSERT_TRUE(props.existsPropertyVector<double>(name + "_ip"))
<< "Property vector '" << name + "_ip"
<< "' does not exist in the mesh.";
ASSERT_EQ(0, values_expected.size() % num_comp);
auto const num_int_pts = values_expected.size() / num_comp;
auto const& ip_data_actual =
*props.getPropertyVector<double>(name + "_ip");
ASSERT_EQ(MeshLib::MeshItemType::IntegrationPoint,
ip_data_actual.getMeshItemType());
ASSERT_EQ(mesh->getNumberOfElements() * num_int_pts,
ip_data_actual.getNumberOfTuples());
ASSERT_EQ(num_comp, ip_data_actual.getNumberOfGlobalComponents());
EXPECT_THAT(ip_data_actual,
testing::Pointwise(testing::DoubleEq(), values_expected))
<< "Values differ for ip data with name '" << name << "'";
};
TYPED_TEST(ProcessLib_ReflectIPData, CellAverageTest)
{
constexpr int dim = TypeParam::value;
using LocAsm = LocAsmIF<dim>;
std::size_t const num_int_pts = 8;
std::vector<std::unique_ptr<LocAsm>> loc_asms;
// emplace...new is a workaround for an MSVC compiler warning:
// C:\Program Files (x86)\Microsoft Visual
// Studio\2019\Community\VC\Tools\MSVC\14.29.30133\include\memory(3382):
// warning C4244: 'argument': conversion from 'const uintptr_t' to 'const
// unsigned int', possible loss of data
// C:/Users/gitlab/gitlab/_b/bg4d5s_d/0/ogs/ogs/Tests/ProcessLib/
// TestReflectIPData.cpp(792):
// note: see reference to function template instantiation
// 'std::unique_ptr<LocAsm,std::default_delete<LocAsm>>
// std::make_unique<LocAsm,const size_t&,0>(const size_t &)' being compiled
loc_asms.emplace_back(new LocAsm{num_int_pts});
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
auto& loc_asm = *loc_asms.front();
std::unique_ptr<MeshLib::Mesh> mesh{
MeshToolsLib::MeshGenerator::generateLineMesh(1.0, 1)};
auto const ref = ReferenceData<dim>::create(*loc_asms.front(), true);
// compute cell average reference data /////////////////////////////////////
std::map<std::string, std::vector<double>> map_name_to_cell_average;
ProcessLib::Reflection::forEachReflectedFlattenedIPDataAccessor<dim,
LocAsm>(
LocAsm::reflect(),
[&loc_asm, &map_name_to_cell_average](std::string const& name,
unsigned const num_comp,
auto&& double_vec_from_loc_asm)
{
auto [it, emplaced] =
map_name_to_cell_average.emplace(name, num_comp);
EXPECT_TRUE(emplaced)
<< '\'' << name
<< "' seems to exist twice in the reflection data.";
auto const& ip_data = double_vec_from_loc_asm(loc_asm);
ASSERT_EQ(num_int_pts * num_comp, ip_data.size());
// TODO this implementation in the unit test might be too close to
// the production code. In fact, it's almost the same code.
// each integration point corresponds to a column in the mapped
// matrix, vector components/matrix entries are stored contiguously
// in memory.
Eigen::Map<const Eigen::Matrix<double, Eigen::Dynamic,
Eigen::Dynamic, Eigen::ColMajor>>
ip_data_mat{ip_data.data(), num_comp, num_int_pts};
Eigen::Map<Eigen::VectorXd> cell_avg_vec{it->second.data(),
num_comp};
cell_avg_vec = ip_data_mat.rowwise().mean();
});
// function under test /////////////////////////////////////////////////////
ProcessLib::CellAverageData cell_average_data{*mesh};
cell_average_data.computeSecondaryVariable(dim, loc_asms);
// checks //////////////////////////////////////////////////////////////////
auto check = [&map_name_to_cell_average, &mesh](
std::string const& name, unsigned const num_comp_expected,
std::vector<double> const& /*ip_data_expected*/)
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
{
auto const it = map_name_to_cell_average.find(name);
ASSERT_NE(map_name_to_cell_average.end(), it)
<< "No cell average reference data found for data with name '"
<< name << "'";
auto const& cell_avg_expected = it->second;
auto const& props = mesh->getProperties();
ASSERT_TRUE(props.existsPropertyVector<double>(name + "_avg"))
<< "Property vector '" << name + "_avg"
<< "' does not exist in the mesh.";
auto const& cell_avg_actual =
*props.getPropertyVector<double>(name + "_avg");
ASSERT_EQ(MeshLib::MeshItemType::Cell,
cell_avg_actual.getMeshItemType());
ASSERT_EQ(mesh->getNumberOfElements(),
cell_avg_actual.getNumberOfTuples());
ASSERT_EQ(num_comp_expected,
cell_avg_actual.getNumberOfGlobalComponents());
EXPECT_THAT(cell_avg_actual,
testing::Pointwise(testing::DoubleEq(), cell_avg_expected))
<< "Values differ for cell average data with name '" << name << "'";
};