Skip to content
Snippets Groups Projects
Commit b39d1eaa authored by joergbuchwald's avatar joergbuchwald
Browse files

correcting latex formulas

parent a0eeeaaf
No related branches found
No related tags found
No related merge requests found
...@@ -61,10 +61,10 @@ The analytical solution of the coupled THM consolidation problem can be expresse ...@@ -61,10 +61,10 @@ The analytical solution of the coupled THM consolidation problem can be expresse
and and
\begin{equation} \begin{equation}
g^{A}_{,\,i}= \dfrac{2x_{i}At}{r^{4}}\left(f^{A}-1+\dfrac{r}{\sqrt{\pi At}}\exp\left(-\dfrac{r^{2}}{4At}\right)\right),\quad i=1,2,3 g^{A}\_{,i} = \dfrac{2x_{i}At}{r^{4}}\left(f^{A}-1+\dfrac{r}{\sqrt{\pi At}}\exp\left(-\dfrac{r^{2}}{4At}\right)\right),\quad i=1,2,3
\end{equation} \end{equation}
\begin{equation} \begin{equation}
g^{\ast}_{,\,i} = Yg^{\kappa}_{,\,i}-Zg^{c}_{,\,i} g^{\ast}\_{,i} = Yg^{\kappa}\_{,i}-Zg^{c}_{,i}
\end{equation} \end{equation}
For the temperature, porepressure and displacements, the correct solution can be found in the original work: For the temperature, porepressure and displacements, the correct solution can be found in the original work:
...@@ -72,7 +72,7 @@ For the temperature, porepressure and displacements, the correct solution can be ...@@ -72,7 +72,7 @@ For the temperature, porepressure and displacements, the correct solution can be
\Delta T = \dfrac{Q}{4\pi Kr}f^{\kappa} \Delta T = \dfrac{Q}{4\pi Kr}f^{\kappa}
\end{equation} \end{equation}
\begin{equation} \begin{equation}
p = \dfrac{X\,Q}{\left(1-\dfrac{c}{\kappa}\right)\,4\pi Kr}\left(f^{\kappa}-f^{c}\right) p = \dfrac{X\,Q}{\left(1-\dfrac{c}{\kappa}\right)4\pi Kr}\left(f^{\kappa}-f^{c}\right)
\end{equation} \end{equation}
\begin{equation} \begin{equation}
u_{i} = \dfrac{Q a_\text{u}x_{i}}{4\pi Kr}\;g^{\ast} u_{i} = \dfrac{Q a_\text{u}x_{i}}{4\pi Kr}\;g^{\ast}
...@@ -81,10 +81,10 @@ For the temperature, porepressure and displacements, the correct solution can be ...@@ -81,10 +81,10 @@ For the temperature, porepressure and displacements, the correct solution can be
For the stress components the corrected expressions can be found in the work of Chaudhry et al. (2019): For the stress components the corrected expressions can be found in the work of Chaudhry et al. (2019):
\begin{equation} \begin{equation}
\sigma^{\prime}_{ij\,|\,j=i} = \dfrac{Q a_\text{u}}{4\pi Kr}\left( 2G\left[g^{\ast}\left(1-\dfrac{x^{2}_{i}}{r^{2}}\right)+x_{i}g^{\ast}_{,\,i}\right]+\lambda \left[x_{i}g^{\ast}_{,\,i}+2g^{\ast}\right]\right)-b^{\prime}\Delta T \sigma^{\prime}\_{ij\,|\,j=i} = \dfrac{Q a_\text{u}}{4\pi Kr}\left( 2G\left[g^{\ast}\left(1-\dfrac{x^{2}_{i}}{r^{2}}\right)+x_{i}g^{\ast}_{,i}\right]+\lambda \left[x_{i}g^{\ast}_{,i}+2g^{\ast}\right]\right)-b^{\prime}\Delta T
\end{equation} \end{equation}
\begin{equation} \begin{equation}
\sigma^{\prime}_{ij\,|\,j \neq i} = \dfrac{Q a_\text{u}}{4\pi Kr}\left( G\left[x_{i}g^{\ast}_{,\,j}+x_{j}g^{\ast}_{,\,i}-2g^{\ast}\dfrac{x_{i}x_{j}}{r^{2}}\right]\right) \sigma^{\prime}\_{ij\,|\,j \neq i} = \dfrac{Q a_\text{u}}{4\pi Kr}\left( G\left[x_{i}g^{\ast}_{,j}+x_{j}g^{\ast}_{,i}-2g^{\ast}\dfrac{x_{i}x_{j}}{r^{2}}\right]\right)
\end{equation} \end{equation}
## Results and evaluation ## Results and evaluation
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment