Newer
Older
@item --load-path=@var{directory}
@itemx -L @var{directory}
Add @var{directory} to the front of the package module search path
(@pxref{Package Modules}).
This allows users to define their own packages and make them visible to
the command-line tools.
@item --keep-failed
@itemx -K
Keep the build tree of failed builds. Thus, if a build fails, its build
tree is kept under @file{/tmp}, in a directory whose name is shown at
the end of the build log. This is useful when debugging build issues.
@xref{Debugging Build Failures}, for tips and tricks on how to debug
build issues.
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
@item --keep-going
@itemx -k
Keep going when some of the derivations fail to build; return only once
all the builds have either completed or failed.
The default behavior is to stop as soon as one of the specified
derivations has failed.
@item --dry-run
@itemx -n
Do not build the derivations.
@item --fallback
When substituting a pre-built binary fails, fall back to building
packages locally.
@item --substitute-urls=@var{urls}
@anchor{client-substitute-urls}
Consider @var{urls} the whitespace-separated list of substitute source
URLs, overriding the default list of URLs of @command{guix-daemon}
(@pxref{daemon-substitute-urls,, @command{guix-daemon} URLs}).
This means that substitutes may be downloaded from @var{urls}, provided
they are signed by a key authorized by the system administrator
(@pxref{Substitutes}).
When @var{urls} is the empty string, substitutes are effectively
disabled.
@item --no-substitutes
Do not use substitutes for build products. That is, always build things
locally instead of allowing downloads of pre-built binaries
(@pxref{Substitutes}).
@item --no-grafts
Do not ``graft'' packages. In practice, this means that package updates
available as grafts are not applied. @xref{Security Updates}, for more
information on grafts.
@item --rounds=@var{n}
Build each derivation @var{n} times in a row, and raise an error if
consecutive build results are not bit-for-bit identical.
This is a useful way to detect non-deterministic builds processes.
Non-deterministic build processes are a problem because they make it
practically impossible for users to @emph{verify} whether third-party
binaries are genuine. @xref{Invoking guix challenge}, for more.
Note that, currently, the differing build results are not kept around,
so you will have to manually investigate in case of an error---e.g., by
stashing one of the build results with @code{guix archive --export}
(@pxref{Invoking guix archive}), then rebuilding, and finally comparing
the two results.
@item --no-build-hook
Do not attempt to offload builds @i{via} the ``build hook'' of the daemon
(@pxref{Daemon Offload Setup}). That is, always build things locally
instead of offloading builds to remote machines.
@item --max-silent-time=@var{seconds}
When the build or substitution process remains silent for more than
@var{seconds}, terminate it and report a build failure.
By default, the daemon's setting is honored (@pxref{Invoking
guix-daemon, @code{--max-silent-time}}).
@item --timeout=@var{seconds}
Likewise, when the build or substitution process lasts for more than
@var{seconds}, terminate it and report a build failure.
By default, the daemon's setting is honored (@pxref{Invoking
guix-daemon, @code{--timeout}}).
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
@item --verbosity=@var{level}
Use the given verbosity level. @var{level} must be an integer between 0
and 5; higher means more verbose output. Setting a level of 4 or more
may be helpful when debugging setup issues with the build daemon.
@item --cores=@var{n}
@itemx -c @var{n}
Allow the use of up to @var{n} CPU cores for the build. The special
value @code{0} means to use as many CPU cores as available.
@item --max-jobs=@var{n}
@itemx -M @var{n}
Allow at most @var{n} build jobs in parallel. @xref{Invoking
guix-daemon, @code{--max-jobs}}, for details about this option and the
equivalent @command{guix-daemon} option.
@end table
Behind the scenes, @command{guix build} is essentially an interface to
the @code{package-derivation} procedure of the @code{(guix packages)}
module, and to the @code{build-derivations} procedure of the @code{(guix
derivations)} module.
In addition to options explicitly passed on the command line,
@command{guix build} and other @command{guix} commands that support
building honor the @code{GUIX_BUILD_OPTIONS} environment variable.
@defvr {Environment Variable} GUIX_BUILD_OPTIONS
Users can define this variable to a list of command line options that
will automatically be used by @command{guix build} and other
@command{guix} commands that can perform builds, as in the example
below:
@example
$ export GUIX_BUILD_OPTIONS="--no-substitutes -c 2 -L /foo/bar"
@end example
These options are parsed independently, and the result is appended to
the parsed command-line options.
@end defvr
@node Package Transformation Options
@subsection Package Transformation Options
@cindex package variants
Another set of command-line options supported by @command{guix build}
and also @command{guix package} are @dfn{package transformation
options}. These are options that make it possible to define @dfn{package
variants}---for instance, packages built from different source code.
This is a convenient way to create customized packages on the fly
without having to type in the definitions of package variants
(@pxref{Defining Packages}).
@table @code
@item --with-source=@var{source}
Use @var{source} as the source of the corresponding package.
@var{source} must be a file name or a URL, as for @command{guix
download} (@pxref{Invoking guix download}).
The ``corresponding package'' is taken to be the one specified on the
command line the name of which matches the base of @var{source}---e.g.,
if @var{source} is @code{/src/guile-2.0.10.tar.gz}, the corresponding
package is @code{guile}. Likewise, the version string is inferred from
@var{source}; in the previous example, it is @code{2.0.10}.
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
This option allows users to try out versions of packages other than the
one provided by the distribution. The example below downloads
@file{ed-1.7.tar.gz} from a GNU mirror and uses that as the source for
the @code{ed} package:
@example
guix build ed --with-source=mirror://gnu/ed/ed-1.7.tar.gz
@end example
As a developer, @code{--with-source} makes it easy to test release
candidates:
@example
guix build guile --with-source=../guile-2.0.9.219-e1bb7.tar.xz
@end example
@dots{} or to build from a checkout in a pristine environment:
@example
$ git clone git://git.sv.gnu.org/guix.git
$ guix build guix --with-source=./guix
@end example
@item --with-input=@var{package}=@var{replacement}
Replace dependency on @var{package} by a dependency on
@var{replacement}. @var{package} must be a package name, and
@var{replacement} must be a package specification such as @code{guile}
or @code{guile@@1.8}.
For instance, the following command builds Guix, but replaces its
dependency on the current stable version of Guile with a dependency on
the legacy version of Guile, @code{guile@@2.0}:
guix build --with-input=guile=guile@@2.0 guix
@end example
This is a recursive, deep replacement. So in this example, both
@code{guix} and its dependency @code{guile-json} (which also depends on
@code{guile}) get rebuilt against @code{guile@@2.0}.
This is implemented using the @code{package-input-rewriting} Scheme
procedure (@pxref{Defining Packages, @code{package-input-rewriting}}).
@item --with-graft=@var{package}=@var{replacement}
This is similar to @code{--with-input} but with an important difference:
instead of rebuilding the whole dependency chain, @var{replacement} is
built and then @dfn{grafted} onto the binaries that were initially
referring to @var{package}. @xref{Security Updates}, for more
information on grafts.
For example, the command below grafts version 3.5.4 of GnuTLS onto Wget
and all its dependencies, replacing references to the version of GnuTLS
they currently refer to:
@example
guix build --with-graft=gnutls=gnutls@@3.5.4 wget
@end example
This has the advantage of being much faster than rebuilding everything.
But there is a caveat: it works if and only if @var{package} and
@var{replacement} are strictly compatible---for example, if they provide
a library, the application binary interface (ABI) of those libraries
must be compatible. If @var{replacement} is somehow incompatible with
@var{package}, then the resulting package may be unusable. Use with
care!
@node Additional Build Options
@subsection Additional Build Options
The command-line options presented below are specific to @command{guix
build}.
@item --quiet
@itemx -q
Build quietly, without displaying the build log. Upon completion, the
build log is kept in @file{/var} (or similar) and can always be
retrieved using the @option{--log-file} option.
@item --file=@var{file}
@itemx -f @var{file}
Build the package or derivation that the code within @var{file}
evaluates to.
As an example, @var{file} might contain a package definition like this
(@pxref{Defining Packages}):
@example
@verbatiminclude package-hello.scm
@end example
@item --expression=@var{expr}
@itemx -e @var{expr}
Build the package or derivation @var{expr} evaluates to.
For example, @var{expr} may be @code{(@@ (gnu packages guile)
guile-1.8)}, which unambiguously designates this specific variant of
version 1.8 of Guile.
Alternatively, @var{expr} may be a G-expression, in which case it is used
as a build program passed to @code{gexp->derivation}
(@pxref{G-Expressions}).
Lastly, @var{expr} may refer to a zero-argument monadic procedure
(@pxref{The Store Monad}). The procedure must return a derivation as a
monadic value, which is then passed through @code{run-with-store}.
Build the source derivations of the packages, rather than the packages
For instance, @code{guix build -S gcc} returns something like
@file{/gnu/store/@dots{}-gcc-4.7.2.tar.bz2}, which is the GCC
source tarball.
The returned source tarball is the result of applying any patches and
code snippets specified in the package @code{origin} (@pxref{Defining
@item --sources
Fetch and return the source of @var{package-or-derivation} and all their
dependencies, recursively. This is a handy way to obtain a local copy
of all the source code needed to build @var{packages}, allowing you to
eventually build them even without network access. It is an extension
of the @code{--source} option and can accept one of the following
optional argument values:
@table @code
@item package
This value causes the @code{--sources} option to behave in the same way
as the @code{--source} option.
@item all
Build the source derivations of all packages, including any source that
might be listed as @code{inputs}. This is the default value.
@example
$ guix build --sources tzdata
The following derivations will be built:
/gnu/store/@dots{}-tzdata2015b.tar.gz.drv
/gnu/store/@dots{}-tzcode2015b.tar.gz.drv
@end example
@item transitive
Build the source derivations of all packages, as well of all transitive
inputs to the packages. This can be used e.g. to
prefetch package source for later offline building.
@example
$ guix build --sources=transitive tzdata
The following derivations will be built:
/gnu/store/@dots{}-tzcode2015b.tar.gz.drv
/gnu/store/@dots{}-findutils-4.4.2.tar.xz.drv
/gnu/store/@dots{}-grep-2.21.tar.xz.drv
/gnu/store/@dots{}-coreutils-8.23.tar.xz.drv
/gnu/store/@dots{}-make-4.1.tar.xz.drv
/gnu/store/@dots{}-bash-4.3.tar.xz.drv
@dots{}
@end example
@end table
@item --system=@var{system}
@itemx -s @var{system}
Attempt to build for @var{system}---e.g., @code{i686-linux}---instead of
An example use of this is on Linux-based systems, which can emulate
different personalities. For instance, passing
@code{--system=i686-linux} on an @code{x86_64-linux} system allows users
to build packages in a complete 32-bit environment.
@item --target=@var{triplet}
@cindex cross-compilation
Cross-build for @var{triplet}, which must be a valid GNU triplet, such
as @code{"mips64el-linux-gnu"} (@pxref{Specifying target triplets, GNU
configuration triplets,, autoconf, Autoconf}).
@anchor{build-check}
@item --check
@cindex determinism, checking
@cindex reproducibility, checking
Rebuild @var{package-or-derivation}, which are already available in the
store, and raise an error if the build results are not bit-for-bit
identical.
This mechanism allows you to check whether previously installed
substitutes are genuine (@pxref{Substitutes}), or whether the build result
of a package is deterministic. @xref{Invoking guix challenge}, for more
When used in conjunction with @option{--keep-failed}, the differing
output is kept in the store, under @file{/gnu/store/@dots{}-check}.
This makes it easy to look for differences between the two results.
@item --repair
@cindex repairing store items
@cindex corruption, recovering from
Attempt to repair the specified store items, if they are corrupt, by
re-downloading or rebuilding them.
This operation is not atomic and thus restricted to @code{root}.
@item --derivations
@itemx -d
Return the derivation paths, not the output paths, of the given
packages.
@item --root=@var{file}
@itemx -r @var{file}
Make @var{file} a symlink to the result, and register it as a garbage
collector root.
@item --log-file
Return the build log file names or URLs for the given
@var{package-or-derivation}, or raise an error if build logs are
missing.
This works regardless of how packages or derivations are specified. For
instance, the following invocations are equivalent:
@example
guix build --log-file `guix build -d guile`
guix build --log-file `guix build guile`
guix build --log-file guile
guix build --log-file -e '(@@ (gnu packages guile) guile-2.0)'
@end example
If a log is unavailable locally, and unless @code{--no-substitutes} is
passed, the command looks for a corresponding log on one of the
substitute servers (as specified with @code{--substitute-urls}.)
So for instance, imagine you want to see the build log of GDB on MIPS,
but you are actually on an @code{x86_64} machine:
$ guix build --log-file gdb -s mips64el-linux
https://hydra.gnu.org/log/@dots{}-gdb-7.10
@end example
You can freely access a huge library of build logs!
@end table
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
@node Debugging Build Failures
@subsection Debugging Build Failures
@cindex build failures, debugging
When defining a new package (@pxref{Defining Packages}), you will
probably find yourself spending some time debugging and tweaking the
build until it succeeds. To do that, you need to operate the build
commands yourself in an environment as close as possible to the one the
build daemon uses.
To that end, the first thing to do is to use the @option{--keep-failed}
or @option{-K} option of @command{guix build}, which will keep the
failed build tree in @file{/tmp} or whatever directory you specified as
@code{TMPDIR} (@pxref{Invoking guix build, @code{--keep-failed}}).
From there on, you can @command{cd} to the failed build tree and source
the @file{environment-variables} file, which contains all the
environment variable definitions that were in place when the build
failed. So let's say you're debugging a build failure in package
@code{foo}; a typical session would look like this:
@example
$ guix build foo -K
@dots{} @i{build fails}
$ cd /tmp/guix-build-foo.drv-0
$ source ./environment-variables
$ cd foo-1.2
@end example
Now, you can invoke commands as if you were the daemon (almost) and
troubleshoot your build process.
Sometimes it happens that, for example, a package's tests pass when you
run them manually but they fail when the daemon runs them. This can
happen because the daemon runs builds in containers where, unlike in our
environment above, network access is missing, @file{/bin/sh} does not
exist, etc. (@pxref{Build Environment Setup}).
In such cases, you may need to run inspect the build process from within
a container similar to the one the build daemon creates:
@example
$ guix build -K foo
@dots{}
$ cd /tmp/guix-build-foo.drv-0
$ guix environment --no-grafts -C foo --ad-hoc strace gdb
[env]# source ./environment-variables
[env]# cd foo-1.2
@end example
Here, @command{guix environment -C} creates a container and spawns a new
shell in it (@pxref{Invoking guix environment}). The @command{--ad-hoc
strace gdb} part adds the @command{strace} and @command{gdb} commands to
the container, which would may find handy while debugging. The
@option{--no-grafts} option makes sure we get the exact same
environment, with ungrafted packages (@pxref{Security Updates}, for more
info on grafts).
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
To get closer to a container like that used by the build daemon, we can
remove @file{/bin/sh}:
@example
[env]# rm /bin/sh
@end example
(Don't worry, this is harmless: this is all happening in the throw-away
container created by @command{guix environment}.)
The @command{strace} command is probably not in the search path, but we
can run:
@example
[env]# $GUIX_ENVIRONMENT/bin/strace -f -o log make check
@end example
In this way, not only you will have reproduced the environment variables
the daemon uses, you will also be running the build process in a container
similar to the one the daemon uses.
@node Invoking guix edit
@section Invoking @command{guix edit}
@cindex package definition, editing
So many packages, so many source files! The @command{guix edit} command
facilitates the life of users and packagers by pointing their editor at
the source file containing the definition of the specified packages.
For instance:
guix edit gcc@@4.9 vim
launches the program specified in the @code{VISUAL} or in the
@code{EDITOR} environment variable to view the recipe of GCC@tie{}4.9.3
If you are using a Guix Git checkout (@pxref{Building from Git}), or
have created your own packages on @code{GUIX_PACKAGE_PATH}
(@pxref{Defining Packages}), you will be able to edit the package
recipes. Otherwise, you will be able to examine the read-only recipes
for packages currently in the store.
@node Invoking guix download
@section Invoking @command{guix download}
@cindex @command{guix download}
@cindex downloading package sources
When writing a package definition, developers typically need to download
a source tarball, compute its SHA256 hash, and write that
hash in the package definition (@pxref{Defining Packages}). The
@command{guix download} tool helps with this task: it downloads a file
from the given URI, adds it to the store, and prints both its file name
in the store and its SHA256 hash.
The fact that the downloaded file is added to the store saves bandwidth:
when the developer eventually tries to build the newly defined package
with @command{guix build}, the source tarball will not have to be
downloaded again because it is already in the store. It is also a
convenient way to temporarily stash files, which may be deleted
eventually (@pxref{Invoking guix gc}).
The @command{guix download} command supports the same URIs as used in
package definitions. In particular, it supports @code{mirror://} URIs.
@code{https} URIs (HTTP over TLS) are supported @emph{provided} the
Guile bindings for GnuTLS are available in the user's environment; when
they are not available, an error is raised. @xref{Guile Preparations,
how to install the GnuTLS bindings for Guile,, gnutls-guile,
GnuTLS-Guile}, for more information.
@command{guix download} verifies HTTPS server certificates by loading
the certificates of X.509 authorities from the directory pointed to by
the @code{SSL_CERT_DIR} environment variable (@pxref{X.509
Certificates}), unless @option{--no-check-certificate} is used.
The following options are available:
@table @code
@item --format=@var{fmt}
@itemx -f @var{fmt}
Write the hash in the format specified by @var{fmt}. For more
information on the valid values for @var{fmt}, @pxref{Invoking guix hash}.
@item --no-check-certificate
Do not validate the X.509 certificates of HTTPS servers.
When using this option, you have @emph{absolutely no guarantee} that you
are communicating with the authentic server responsible for the given
URL, which makes you vulnerable to ``man-in-the-middle'' attacks.
@item --output=@var{file}
@itemx -o @var{file}
Save the downloaded file to @var{file} instead of adding it to the
store.
@node Invoking guix hash
@section Invoking @command{guix hash}
The @command{guix hash} command computes the SHA256 hash of a file.
It is primarily a convenience tool for anyone contributing to the
distribution: it computes the cryptographic hash of a file, which can be
used in the definition of a package (@pxref{Defining Packages}).
The general syntax is:
@example
guix hash @var{option} @var{file}
@end example
When @var{file} is @code{-} (a hyphen), @command{guix hash} computes the
hash of data read from standard input. @command{guix hash} has the
following options:
@table @code
@item --format=@var{fmt}
@itemx -f @var{fmt}
Write the hash in the format specified by @var{fmt}.
Supported formats: @code{nix-base32}, @code{base32}, @code{base16}
(@code{hex} and @code{hexadecimal} can be used as well).
If the @option{--format} option is not specified, @command{guix hash}
will output the hash in @code{nix-base32}. This representation is used
in the definitions of packages.
@item --recursive
@itemx -r
Compute the hash on @var{file} recursively.
In this case, the hash is computed on an archive containing @var{file},
including its children if it is a directory. Some of the metadata of
@var{file} is part of the archive; for instance, when @var{file} is a
regular file, the hash is different depending on whether @var{file} is
executable or not. Metadata such as time stamps has no impact on the
hash (@pxref{Invoking guix archive}).
@c FIXME: Replace xref above with xref to an ``Archive'' section when
@c it exists.
@item --exclude-vcs
@itemx -x
When combined with @option{--recursive}, exclude version control system
directories (@file{.bzr}, @file{.git}, @file{.hg}, etc.)
@vindex git-fetch
As an example, here is how you would compute the hash of a Git checkout,
which is useful when using the @code{git-fetch} method (@pxref{origin
Reference}):
@example
$ git clone http://example.org/foo.git
$ cd foo
@node Invoking guix import
@section Invoking @command{guix import}
@cindex importing packages
@cindex package import
@cindex package conversion
@cindex Invoking @command{guix import}
The @command{guix import} command is useful for people who would like to
add a package to the distribution with as little work as
possible---a legitimate demand. The command knows of a few
repositories from which it can ``import'' package metadata. The result
is a package definition, or a template thereof, in the format we know
(@pxref{Defining Packages}).
The general syntax is:
@example
guix import @var{importer} @var{options}@dots{}
@end example
@var{importer} specifies the source from which to import package
metadata, and @var{options} specifies a package identifier and other
options specific to @var{importer}. Currently, the available
``importers'' are:
@table @code
@item gnu
Import metadata for the given GNU package. This provides a template
for the latest version of that GNU package, including the hash of its
source tarball, and its canonical synopsis and description.
Additional information such as the package dependencies and its
license needs to be figured out manually.
For example, the following command returns a package definition for
GNU@tie{}Hello:
@example
guix import gnu hello
@end example
Specific command-line options are:
@table @code
@item --key-download=@var{policy}
As for @code{guix refresh}, specify the policy to handle missing OpenPGP
keys when verifying the package signature. @xref{Invoking guix
refresh, @code{--key-download}}.
@end table
@item pypi
@cindex pypi
Import metadata from the @uref{https://pypi.python.org/, Python Package
Index}@footnote{This functionality requires Guile-JSON to be installed.
@xref{Requirements}.}. Information is taken from the JSON-formatted
description available at @code{pypi.python.org} and usually includes all
the relevant information, including package dependencies. For maximum
efficiency, it is recommended to install the @command{unzip} utility, so
that the importer can unzip Python wheels and gather data from them.
The command below imports metadata for the @code{itsdangerous} Python
package:
@example
guix import pypi itsdangerous
@end example
RubyGems}@footnote{This functionality requires Guile-JSON to be
installed. @xref{Requirements}.}. Information is taken from the
JSON-formatted description available at @code{rubygems.org} and includes
most relevant information, including runtime dependencies. There are
some caveats, however. The metadata doesn't distinguish between
synopses and descriptions, so the same string is used for both fields.
Additionally, the details of non-Ruby dependencies required to build
native extensions is unavailable and left as an exercise to the
packager.
The command below imports metadata for the @code{rails} Ruby package:
@example
guix import gem rails
@end example
Import metadata from @uref{https://www.metacpan.org/, MetaCPAN}@footnote{This
functionality requires Guile-JSON to be installed.
@xref{Requirements}.}.
Information is taken from the JSON-formatted metadata provided through
@uref{https://api.metacpan.org/, MetaCPAN's API} and includes most
relevant information, such as module dependencies. License information
should be checked closely. If Perl is available in the store, then the
@code{corelist} utility will be used to filter core modules out of the
list of dependencies.
The command command below imports metadata for the @code{Acme::Boolean}
Perl module:
@example
guix import cpan Acme::Boolean
@end example
Import metadata from @uref{http://cran.r-project.org/, CRAN}, the
central repository for the @uref{http://r-project.org, GNU@tie{}R
statistical and graphical environment}.
Information is extracted from the @code{DESCRIPTION} file of the package.
The command command below imports metadata for the @code{Cairo}
R package:
@example
guix import cran Cairo
@end example
When @code{--recursive} is added, the importer will traverse the
dependency graph of the given upstream package recursively and generate
package expressions for all those packages that are not yet in Guix.
When @code{--archive=bioconductor} is added, metadata is imported from
@uref{http://www.bioconductor.org/, Bioconductor}, a repository of R
packages for for the analysis and comprehension of high-throughput
genomic data in bioinformatics.
Information is extracted from the @code{DESCRIPTION} file of a package
published on the web interface of the Bioconductor SVN repository.
The command below imports metadata for the @code{GenomicRanges}
R package:
@example
guix import cran --archive=bioconductor GenomicRanges
@end example
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
@item texlive
@cindex TeX Live
@cindex CTAN
Import metadata from @uref{http://www.ctan.org/, CTAN}, the
comprehensive TeX archive network for TeX packages that are part of the
@uref{https://www.tug.org/texlive/, TeX Live distribution}.
Information about the package is obtained through the XML API provided
by CTAN, while the source code is downloaded from the SVN repository of
the Tex Live project. This is done because the CTAN does not keep
versioned archives.
The command command below imports metadata for the @code{fontspec}
TeX package:
@example
guix import texlive fontspec
@end example
When @code{--archive=DIRECTORY} is added, the source code is downloaded
not from the @file{latex} sub-directory of the @file{texmf-dist/source}
tree in the TeX Live SVN repository, but from the specified sibling
directory under the same root.
The command below imports metadata for the @code{ifxetex} package from
CTAN while fetching the sources from the directory
@file{texmf/source/generic}:
@example
guix import texlive --archive=generic ifxetex
@end example
Import metadata from a local copy of the source of the
@uref{http://nixos.org/nixpkgs/, Nixpkgs distribution}@footnote{This
relies on the @command{nix-instantiate} command of
@uref{http://nixos.org/nix/, Nix}.}. Package definitions in Nixpkgs are
typically written in a mixture of Nix-language and Bash code. This
command only imports the high-level package structure that is written in
the Nix language. It normally includes all the basic fields of a
package definition.
When importing a GNU package, the synopsis and descriptions are replaced
by their canonical upstream variant.
Usually, you will first need to do:
@example
export NIX_REMOTE=daemon
@end example
@noindent
so that @command{nix-instantiate} does not try to open the Nix database.
As an example, the command below imports the package definition of
LibreOffice (more precisely, it imports the definition of the package
bound to the @code{libreoffice} top-level attribute):
@example
guix import nix ~/path/to/nixpkgs libreoffice
@end example
Import metadata from the Haskell community's central package archive
@uref{https://hackage.haskell.org/, Hackage}. Information is taken from
Cabal files and includes all the relevant information, including package
dependencies.
Specific command-line options are:
@table @code
@item --stdin
@itemx -s
@item --no-test-dependencies
@itemx -t
Do not include dependencies required only by the test suites.
@item --cabal-environment=@var{alist}
@itemx -e @var{alist}
@var{alist} is a Scheme alist defining the environment in which the
Cabal conditionals are evaluated. The accepted keys are: @code{os},
@code{arch}, @code{impl} and a string representing the name of a flag.
The value associated with a flag has to be either the symbol
@code{true} or @code{false}. The value associated with other keys
has to conform to the Cabal file format definition. The default value
associated with the keys @code{os}, @code{arch} and @code{impl} is
@samp{linux}, @samp{x86_64} and @samp{ghc}, respectively.
The command below imports metadata for the latest version of the
@code{HTTP} Haskell package without including test dependencies and
specifying the value of the flag @samp{network-uri} as @code{false}:
guix import hackage -t -e "'((\"network-uri\" . false))" HTTP
@end example
A specific package version may optionally be specified by following the
package name by an at-sign and a version number as in the following example:
guix import hackage mtl@@2.1.3.1
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
@item stackage
@cindex stackage
The @code{stackage} importer is a wrapper around the @code{hackage} one.
It takes a package name, looks up the package version included in a
long-term support (LTS) @uref{https://www.stackage.org, Stackage}
release and uses the @code{hackage} importer to retrieve its metadata.
Note that it is up to you to select an LTS release compatible with the
GHC compiler used by Guix.
Specific command-line options are:
@table @code
@item --no-test-dependencies
@itemx -t
Do not include dependencies required only by the test suites.
@item --lts-version=@var{version}
@itemx -r @var{version}
@var{version} is the desired LTS release version. If omitted the latest
release is used.
@end table
The command below imports metadata for the @code{HTTP} Haskell package
included in the LTS Stackage release version 7.18:
@example
guix import stackage --lts-version=7.18 HTTP
@end example
Import metadata from an Emacs Lisp Package Archive (ELPA) package
repository (@pxref{Packages,,, emacs, The GNU Emacs Manual}).
Specific command-line options are:
@table @code
@item --archive=@var{repo}
@itemx -a @var{repo}
@var{repo} identifies the archive repository from which to retrieve the
information. Currently the supported repositories and their identifiers
are:
@itemize -
@item
@uref{http://elpa.gnu.org/packages, GNU}, selected by the @code{gnu}
Packages from @code{elpa.gnu.org} are signed with one of the keys
contained in the GnuPG keyring at
@file{share/emacs/25.1/etc/package-keyring.gpg} (or similar) in the
@code{emacs} package (@pxref{Package Installation, ELPA package
signatures,, emacs, The GNU Emacs Manual}).
@uref{http://stable.melpa.org/packages, MELPA-Stable}, selected by the
@code{melpa-stable} identifier.
@item
@uref{http://melpa.org/packages, MELPA}, selected by the @code{melpa}
identifier.
@end itemize
@end table
@item crate
@cindex crate
Import metadata from the crates.io Rust package repository
@uref{https://crates.io, crates.io}.
@end table
The structure of the @command{guix import} code is modular. It would be
useful to have more importers for other package formats, and your help
is welcome here (@pxref{Contributing}).
@node Invoking guix refresh
@section Invoking @command{guix refresh}
The primary audience of the @command{guix refresh} command is developers
of the GNU software distribution. By default, it reports any packages
provided by the distribution that are outdated compared to the latest
upstream version, like this:
@example
$ guix refresh
gnu/packages/gettext.scm:29:13: gettext would be upgraded from 0.18.1.1 to 0.18.2.1
gnu/packages/glib.scm:77:12: glib would be upgraded from 2.34.3 to 2.37.0
@end example
Alternately, one can specify packages to consider, in which case a
warning is emitted for packages that lack an updater:
@example
$ guix refresh coreutils guile guile-ssh
gnu/packages/ssh.scm:205:2: warning: no updater for guile-ssh
gnu/packages/guile.scm:136:12: guile would be upgraded from 2.0.12 to 2.0.13
@end example
@command{guix refresh} browses the upstream repository of each package and determines
the highest version number of the releases therein. The command
knows how to update specific types of packages: GNU packages, ELPA
packages, etc.---see the documentation for @option{--type} below. There
are many packages, though, for which it lacks a method to determine
whether a new upstream release is available. However, the mechanism is
extensible, so feel free to get in touch with us to add a new method!
When passed @code{--update}, it modifies distribution source files to
update the version numbers and source tarball hashes of those package
recipes (@pxref{Defining Packages}). This is achieved by downloading
each package's latest source tarball and its associated OpenPGP
signature, authenticating the downloaded tarball against its signature
using @command{gpg}, and finally computing its hash. When the public
key used to sign the tarball is missing from the user's keyring, an
attempt is made to automatically retrieve it from a public key server;
when this is successful, the key is added to the user's keyring; otherwise,
@command{guix refresh} reports an error.
The following options are supported:
@table @code
@item --expression=@var{expr}
@itemx -e @var{expr}
Consider the package @var{expr} evaluates to.
This is useful to precisely refer to a package, as in this example:
@example
guix refresh -l -e '(@@@@ (gnu packages commencement) glibc-final)'
@end example