Newer
Older
@code{ungexp}, and @code{ungexp-splicing} (or simply: @code{#~},
@code{#$}, and @code{#$@@}), which are comparable to
@code{quasiquote}, @code{unquote}, and @code{unquote-splicing},
respectively (@pxref{Expression Syntax, @code{quasiquote},, guile,
GNU Guile Reference Manual}). However, there are major differences:
@itemize
@item
Gexps are meant to be written to a file and run or manipulated by other
processes.
@item
When a high-level object such as a package or derivation is unquoted
inside a gexp, the result is as if its output file name had been
introduced.
@item
Gexps carry information about the packages or derivations they refer to,
and these dependencies are automatically added as inputs to the build
processes that use them.
@end itemize
@cindex lowering, of high-level objects in gexps
This mechanism is not limited to package and derivation
objects: @dfn{compilers} able to ``lower'' other high-level objects to
derivations or files in the store can be defined,
such that these objects can also be inserted
into gexps. For example, a useful type of high-level objects that can be
inserted in a gexp is ``file-like objects'', which make it easy to
derivations and such (see @code{local-file} and @code{plain-file}
below.)
To illustrate the idea, here is an example of a gexp:
@example
(define build-exp
#~(begin
(mkdir #$output)
(chdir #$output)
(symlink (string-append #$coreutils "/bin/ls")
"list-files")))
@end example
This gexp can be passed to @code{gexp->derivation}; we obtain a
derivation that builds a directory containing exactly one symlink to
@file{/gnu/store/@dots{}-coreutils-8.22/bin/ls}:
@example
(gexp->derivation "the-thing" build-exp)
@end example
As one would expect, the @code{"/gnu/store/@dots{}-coreutils-8.22"} string is
substituted to the reference to the @var{coreutils} package in the
actual build code, and @var{coreutils} is automatically made an input to
the derivation. Likewise, @code{#$output} (equivalent to @code{(ungexp
output)}) is replaced by a string containing the directory name of the
output of the derivation.
@cindex cross compilation
In a cross-compilation context, it is useful to distinguish between
references to the @emph{native} build of a package---that can run on the
host---versus references to cross builds of a package. To that end, the
@code{#+} plays the same role as @code{#$}, but is a reference to a
native package build:
@example
(gexp->derivation "vi"
#~(begin
(mkdir #$output)
(system* (string-append #+coreutils "/bin/ln")
"-s"
(string-append #$emacs "/bin/emacs")
(string-append #$output "/bin/vi")))
#:target "mips64el-linux-gnu")
@end example
@noindent
In the example above, the native build of @var{coreutils} is used, so
that @command{ln} can actually run on the host; but then the
cross-compiled build of @var{emacs} is referenced.
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
@cindex imported modules, for gexps
@findex with-imported-modules
Another gexp feature is @dfn{imported modules}: sometimes you want to be
able to use certain Guile modules from the ``host environment'' in the
gexp, so those modules should be imported in the ``build environment''.
The @code{with-imported-modules} form allows you to express that:
@example
(let ((build (with-imported-modules '((guix build utils))
#~(begin
(use-modules (guix build utils))
(mkdir-p (string-append #$output "/bin"))))))
(gexp->derivation "empty-dir"
#~(begin
#$build
(display "success!\n")
#t)))
@end example
@noindent
In this example, the @code{(guix build utils)} module is automatically
pulled into the isolated build environment of our gexp, such that
@code{(use-modules (guix build utils))} works as expected.
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
@cindex module closure
@findex source-module-closure
Usually you want the @emph{closure} of the module to be imported---i.e.,
the module itself and all the modules it depends on---rather than just
the module; failing to do that, attempts to use the module will fail
because of missing dependent modules. The @code{source-module-closure}
procedure computes the closure of a module by looking at its source file
headers, which comes in handy in this case:
@example
(use-modules (guix modules)) ;for 'source-module-closure'
(with-imported-modules (source-module-closure
'((guix build utils)
(gnu build vm)))
(gexp->derivation "something-with-vms"
#~(begin
(use-modules (guix build utils)
(gnu build vm))
@dots{})))
@end example
@cindex extensions, for gexps
@findex with-extensions
In the same vein, sometimes you want to import not just pure-Scheme
modules, but also ``extensions'' such as Guile bindings to C libraries
or other ``full-blown'' packages. Say you need the @code{guile-json}
package available on the build side, here's how you would do it:
@example
(use-modules (gnu packages guile)) ;for 'guile-json'
(with-extensions (list guile-json)
(gexp->derivation "something-with-json"
#~(begin
(use-modules (json))
@dots{})))
@end example
The syntactic form to construct gexps is summarized below.
@deffn {Scheme Syntax} #~@var{exp}
@deffnx {Scheme Syntax} (gexp @var{exp})
Return a G-expression containing @var{exp}. @var{exp} may contain one
or more of the following forms:
@table @code
@item #$@var{obj}
@itemx (ungexp @var{obj})
Introduce a reference to @var{obj}. @var{obj} may have one of the
supported types, for example a package or a
derivation, in which case the @code{ungexp} form is replaced by its
output file name---e.g., @code{"/gnu/store/@dots{}-coreutils-8.22}.
If @var{obj} is a list, it is traversed and references to supported
objects are substituted similarly.
If @var{obj} is another gexp, its contents are inserted and its
dependencies are added to those of the containing gexp.
If @var{obj} is another kind of object, it is inserted as is.
@item #$@var{obj}:@var{output}
@itemx (ungexp @var{obj} @var{output})
This is like the form above, but referring explicitly to the
@var{output} of @var{obj}---this is useful when @var{obj} produces
multiple outputs (@pxref{Packages with Multiple Outputs}).
@item #+@var{obj}
@itemx #+@var{obj}:output
@itemx (ungexp-native @var{obj})
@itemx (ungexp-native @var{obj} @var{output})
Same as @code{ungexp}, but produces a reference to the @emph{native}
build of @var{obj} when used in a cross compilation context.
@item #$output[:@var{output}]
@itemx (ungexp output [@var{output}])
Insert a reference to derivation output @var{output}, or to the main
output when @var{output} is omitted.
This only makes sense for gexps passed to @code{gexp->derivation}.
@item #$@@@var{lst}
@itemx (ungexp-splicing @var{lst})
Like the above, but splices the contents of @var{lst} inside the
containing list.
@item #+@@@var{lst}
@itemx (ungexp-native-splicing @var{lst})
Like the above, but refers to native builds of the objects listed in
@var{lst}.
@end table
G-expressions created by @code{gexp} or @code{#~} are run-time objects
of the @code{gexp?} type (see below.)
@end deffn
@deffn {Scheme Syntax} with-imported-modules @var{modules} @var{body}@dots{}
Mark the gexps defined in @var{body}@dots{} as requiring @var{modules}
in their execution environment.
Each item in @var{modules} can be the name of a module, such as
@code{(guix build utils)}, or it can be a module name, followed by an
arrow, followed by a file-like object:
@example
`((guix build utils)
(guix gcrypt)
((guix config) => ,(scheme-file "config.scm"
#~(define-module @dots{}))))
@end example
@noindent
In the example above, the first two modules are taken from the search
path, and the last one is created from the given file-like object.
This form has @emph{lexical} scope: it has an effect on the gexps
directly defined in @var{body}@dots{}, but not on those defined, say, in
procedures called from @var{body}@dots{}.
@end deffn
@deffn {Scheme Syntax} with-extensions @var{extensions} @var{body}@dots{}
Mark the gexps defined in @var{body}@dots{} as requiring
@var{extensions} in their build and execution environment.
@var{extensions} is typically a list of package objects such as those
defined in the @code{(gnu packages guile)} module.
Concretely, the packages listed in @var{extensions} are added to the
load path while compiling imported modules in @var{body}@dots{}; they
are also added to the load path of the gexp returned by
@var{body}@dots{}.
@end deffn
@deffn {Scheme Procedure} gexp? @var{obj}
Return @code{#t} if @var{obj} is a G-expression.
@end deffn
G-expressions are meant to be written to disk, either as code building
some derivation, or as plain files in the store. The monadic procedures
below allow you to do that (@pxref{The Store Monad}, for more
information about monads.)
@deffn {Monadic Procedure} gexp->derivation @var{name} @var{exp} @
[#:system (%current-system)] [#:target #f] [#:graft? #t] @
[#:hash #f] [#:hash-algo #f] @
[#:recursive? #f] [#:env-vars '()] [#:modules '()] @
[#:module-path @var{%load-path}] @
[#:references-graphs #f] [#:allowed-references #f] @
[#:leaked-env-vars #f] @
[#:script-name (string-append @var{name} "-builder")] @
[#:deprecation-warnings #f] @
[#:local-build? #f] [#:substitutable? #t] [#:guile-for-build #f]
Return a derivation @var{name} that runs @var{exp} (a gexp) with
@var{guile-for-build} (a derivation) on @var{system}; @var{exp} is
stored in a file called @var{script-name}. When @var{target} is true,
it is used as the cross-compilation target triplet for packages referred
to by @var{exp}.
@var{modules} is deprecated in favor of @code{with-imported-modules}.
Its meaning is to
make @var{modules} available in the evaluation context of @var{exp};
@var{modules} is a list of names of Guile modules searched in
@var{module-path} to be copied in the store, compiled, and made available in
the load path during the execution of @var{exp}---e.g., @code{((guix
build utils) (guix build gnu-build-system))}.
@var{effective-version} determines the string to use when adding extensions of
@var{exp} (see @code{with-extensions}) to the search path---e.g., @code{"2.2"}.
@var{graft?} determines whether packages referred to by @var{exp} should be grafted when
applicable.
When @var{references-graphs} is true, it must be a list of tuples of one of the
following forms:
@example
(@var{file-name} @var{package})
(@var{file-name} @var{package} @var{output})
(@var{file-name} @var{derivation})
(@var{file-name} @var{derivation} @var{output})
(@var{file-name} @var{store-item})
@end example
The right-hand-side of each element of @var{references-graphs} is automatically made
an input of the build process of @var{exp}. In the build environment, each
@var{file-name} contains the reference graph of the corresponding item, in a simple
text format.
@var{allowed-references} must be either @code{#f} or a list of output names and packages.
In the latter case, the list denotes store items that the result is allowed to
refer to. Any reference to another store item will lead to a build error.
Similarly for @var{disallowed-references}, which can list items that must not be
referenced by the outputs.
@var{deprecation-warnings} determines whether to show deprecation warnings while
compiling modules. It can be @code{#f}, @code{#t}, or @code{'detailed}.
The other arguments are as for @code{derivation} (@pxref{Derivations}).
The @code{local-file}, @code{plain-file}, @code{computed-file},
@code{program-file}, and @code{scheme-file} procedures below return
@dfn{file-like objects}. That is, when unquoted in a G-expression,
these objects lead to a file in the store. Consider this G-expression:
#~(system* #$(file-append glibc "/sbin/nscd") "-f"
#$(local-file "/tmp/my-nscd.conf"))
@end example
The effect here is to ``intern'' @file{/tmp/my-nscd.conf} by copying it
to the store. Once expanded, for instance @i{via}
@code{gexp->derivation}, the G-expression refers to that copy under
@file{/gnu/store}; thus, modifying or removing the file in @file{/tmp}
does not have any effect on what the G-expression does.
@code{plain-file} can be used similarly; it differs in that the file
content is directly passed as a string.
@deffn {Scheme Procedure} local-file @var{file} [@var{name}] @
[#:recursive? #f] [#:select? (const #t)]
Return an object representing local file @var{file} to add to the store; this
object can be used in a gexp. If @var{file} is a relative file name, it is looked
up relative to the source file where this form appears. @var{file} will be added to
the store under @var{name}--by default the base name of @var{file}.
When @var{recursive?} is true, the contents of @var{file} are added recursively; if @var{file}
designates a flat file and @var{recursive?} is true, its contents are added, and its
permission bits are kept.
When @var{recursive?} is true, call @code{(@var{select?} @var{file}
@var{stat})} for each directory entry, where @var{file} is the entry's
absolute file name and @var{stat} is the result of @code{lstat}; exclude
entries for which @var{select?} does not return true.
This is the declarative counterpart of the @code{interned-file} monadic
procedure (@pxref{The Store Monad, @code{interned-file}}).
@end deffn
@deffn {Scheme Procedure} plain-file @var{name} @var{content}
Return an object representing a text file called @var{name} with the given
@var{content} (a string) to be added to the store.
This is the declarative counterpart of @code{text-file}.
@end deffn
@deffn {Scheme Procedure} computed-file @var{name} @var{gexp} @
[#:options '(#:local-build? #t)]
Return an object representing the store item @var{name}, a file or
directory computed by @var{gexp}. @var{options}
is a list of additional arguments to pass to @code{gexp->derivation}.
This is the declarative counterpart of @code{gexp->derivation}.
@end deffn
@deffn {Monadic Procedure} gexp->script @var{name} @var{exp} @
[#:guile (default-guile)] [#:module-path %load-path]
Return an executable script @var{name} that runs @var{exp} using
@var{guile}, with @var{exp}'s imported modules in its search path.
Look up @var{exp}'s modules in @var{module-path}.
The example below builds a script that simply invokes the @command{ls}
command:
@example
(use-modules (guix gexp) (gnu packages base))
(gexp->script "list-files"
#~(execl #$(file-append coreutils "/bin/ls")
"ls"))
@end example
When ``running'' it through the store (@pxref{The Store Monad,
@code{run-with-store}}), we obtain a derivation that produces an
executable file @file{/gnu/store/@dots{}-list-files} along these lines:
@example
#!/gnu/store/@dots{}-guile-2.0.11/bin/guile -ds
!#
(execl "/gnu/store/@dots{}-coreutils-8.22"/bin/ls" "ls")
@deffn {Scheme Procedure} program-file @var{name} @var{exp} @
[#:guile #f] [#:module-path %load-path]
Return an object representing the executable store item @var{name} that
runs @var{gexp}. @var{guile} is the Guile package used to execute that
script. Imported modules of @var{gexp} are looked up in @var{module-path}.
This is the declarative counterpart of @code{gexp->script}.
@end deffn
@deffn {Monadic Procedure} gexp->file @var{name} @var{exp} @
[#:set-load-path? #t] [#:module-path %load-path] @
[#:guile (default-guile)]
Return a derivation that builds a file @var{name} containing @var{exp}.
When @var{splice?} is true, @var{exp} is considered to be a list of
expressions that will be spliced in the resulting file.
When @var{set-load-path?} is true, emit code in the resulting file to
set @code{%load-path} and @code{%load-compiled-path} to honor
@var{exp}'s imported modules. Look up @var{exp}'s modules in
@var{module-path}.
The resulting file holds references to all the dependencies of @var{exp}
or a subset thereof.
@end deffn
@deffn {Scheme Procedure} scheme-file @var{name} @var{exp} [#:splice? #f]
Return an object representing the Scheme file @var{name} that contains
@var{exp}.
This is the declarative counterpart of @code{gexp->file}.
@end deffn
@deffn {Monadic Procedure} text-file* @var{name} @var{text} @dots{}
Return as a monadic value a derivation that builds a text file
containing all of @var{text}. @var{text} may list, in addition to
strings, objects of any type that can be used in a gexp: packages,
derivations, local file objects, etc. The resulting store file holds
references to all these.
This variant should be preferred over @code{text-file} anytime the file
to create will reference items from the store. This is typically the
case when building a configuration file that embeds store file names,
like this:
@example
(define (profile.sh)
;; Return the name of a shell script in the store that
;; initializes the 'PATH' environment variable.
(text-file* "profile.sh"
"export PATH=" coreutils "/bin:"
grep "/bin:" sed "/bin\n"))
@end example
In this example, the resulting @file{/gnu/store/@dots{}-profile.sh} file
will reference @var{coreutils}, @var{grep}, and @var{sed}, thereby
preventing them from being garbage-collected during its lifetime.
@end deffn
@deffn {Scheme Procedure} mixed-text-file @var{name} @var{text} @dots{}
Return an object representing store file @var{name} containing
@var{text}. @var{text} is a sequence of strings and file-like objects,
as in:
@example
(mixed-text-file "profile"
"export PATH=" coreutils "/bin:" grep "/bin")
@end example
This is the declarative counterpart of @code{text-file*}.
@end deffn
@deffn {Scheme Procedure} file-union @var{name} @var{files}
Return a @code{<computed-file>} that builds a directory containing all of @var{files}.
Each item in @var{files} must be a two-element list where the first element is the
file name to use in the new directory, and the second element is a gexp
denoting the target file. Here's an example:
@example
(file-union "etc"
`(("hosts" ,(plain-file "hosts"
"127.0.0.1 localhost"))
("bashrc" ,(plain-file "bashrc"
"alias ls='ls --color=auto'"))))
@end example
This yields an @code{etc} directory containing these two files.
@end deffn
@deffn {Scheme Procedure} directory-union @var{name} @var{things}
Return a directory that is the union of @var{things}, where @var{things} is a list of
file-like objects denoting directories. For example:
@example
(directory-union "guile+emacs" (list guile emacs))
@end example
yields a directory that is the union of the @code{guile} and @code{emacs} packages.
@end deffn
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
@deffn {Scheme Procedure} file-append @var{obj} @var{suffix} @dots{}
Return a file-like object that expands to the concatenation of @var{obj}
and @var{suffix}, where @var{obj} is a lowerable object and each
@var{suffix} is a string.
As an example, consider this gexp:
@example
(gexp->script "run-uname"
#~(system* #$(file-append coreutils
"/bin/uname")))
@end example
The same effect could be achieved with:
@example
(gexp->script "run-uname"
#~(system* (string-append #$coreutils
"/bin/uname")))
@end example
There is one difference though: in the @code{file-append} case, the
resulting script contains the absolute file name as a string, whereas in
the second case, the resulting script contains a @code{(string-append
@dots{})} expression to construct the file name @emph{at run time}.
@end deffn
Of course, in addition to gexps embedded in ``host'' code, there are
also modules containing build tools. To make it clear that they are
meant to be used in the build stratum, these modules are kept in the
@code{(guix build @dots{})} name space.
@cindex lowering, of high-level objects in gexps
Internally, high-level objects are @dfn{lowered}, using their compiler,
to either derivations or store items. For instance, lowering a package
yields a derivation, and lowering a @code{plain-file} yields a store
item. This is achieved using the @code{lower-object} monadic procedure.
@deffn {Monadic Procedure} lower-object @var{obj} [@var{system}] @
[#:target #f]
Return as a value in @var{%store-monad} the derivation or store item
corresponding to @var{obj} for @var{system}, cross-compiling for
@var{target} if @var{target} is true. @var{obj} must be an object that
has an associated gexp compiler, such as a @code{<package>}.
@end deffn
@c *********************************************************************
@node Utilities
@chapter Utilities
This section describes Guix command-line utilities. Some of them are
primarily targeted at developers and users who write new package
definitions, while others are more generally useful. They complement
the Scheme programming interface of Guix in a convenient way.
* Invoking guix build:: Building packages from the command line.
* Invoking guix download:: Downloading a file and printing its hash.
* Invoking guix hash:: Computing the cryptographic hash of a file.
* Invoking guix import:: Importing package definitions.
* Invoking guix refresh:: Updating package definitions.
* Invoking guix lint:: Finding errors in package definitions.
* Invoking guix graph:: Visualizing the graph of packages.
* Invoking guix environment:: Setting up development environments.
* Invoking guix publish:: Sharing substitutes.
* Invoking guix challenge:: Challenging substitute servers.
* Invoking guix copy:: Copying to and from a remote store.
* Invoking guix container:: Process isolation.
* Invoking guix weather:: Assessing substitute availability.
@node Invoking guix build
@section Invoking @command{guix build}
@cindex package building
@cindex @command{guix build}
The @command{guix build} command builds packages or derivations and
their dependencies, and prints the resulting store paths. Note that it
does not modify the user's profile---this is the job of the
@command{guix package} command (@pxref{Invoking guix package}). Thus,
it is mainly useful for distribution developers.
The general syntax is:
guix build @var{options} @var{package-or-derivation}@dots{}
As an example, the following command builds the latest versions of Emacs
and of Guile, displays their build logs, and finally displays the
resulting directories:
@example
guix build emacs guile
@end example
Similarly, the following command builds all the available packages:
@example
`guix package -A | cut -f1,2 --output-delimiter=@@`
@end example
@var{package-or-derivation} may be either the name of a package found in
the software distribution such as @code{coreutils} or
@file{/gnu/store/@dots{}-coreutils-8.19.drv}. In the former case, a
package with the corresponding name (and optionally version) is searched
for among the GNU distribution modules (@pxref{Package Modules}).
Alternatively, the @code{--expression} option may be used to specify a
Scheme expression that evaluates to a package; this is useful when
disambiguating among several same-named packages or package variants is
needed.
There may be zero or more @var{options}. The available options are
described in the subsections below.
@menu
* Common Build Options:: Build options for most commands.
* Package Transformation Options:: Creating variants of packages.
* Additional Build Options:: Options specific to 'guix build'.
* Debugging Build Failures:: Real life packaging experience.
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
@end menu
@node Common Build Options
@subsection Common Build Options
A number of options that control the build process are common to
@command{guix build} and other commands that can spawn builds, such as
@command{guix package} or @command{guix archive}. These are the
following:
@table @code
@item --load-path=@var{directory}
@itemx -L @var{directory}
Add @var{directory} to the front of the package module search path
(@pxref{Package Modules}).
This allows users to define their own packages and make them visible to
the command-line tools.
@item --keep-failed
@itemx -K
Keep the build tree of failed builds. Thus, if a build fails, its build
tree is kept under @file{/tmp}, in a directory whose name is shown at
the end of the build log. This is useful when debugging build issues.
@xref{Debugging Build Failures}, for tips and tricks on how to debug
build issues.
@item --keep-going
@itemx -k
Keep going when some of the derivations fail to build; return only once
all the builds have either completed or failed.
The default behavior is to stop as soon as one of the specified
derivations has failed.
@item --dry-run
@itemx -n
Do not build the derivations.
@anchor{fallback-option}
@item --fallback
When substituting a pre-built binary fails, fall back to building
packages locally (@pxref{Substitution Failure}).
@item --substitute-urls=@var{urls}
@anchor{client-substitute-urls}
Consider @var{urls} the whitespace-separated list of substitute source
URLs, overriding the default list of URLs of @command{guix-daemon}
(@pxref{daemon-substitute-urls,, @command{guix-daemon} URLs}).
This means that substitutes may be downloaded from @var{urls}, provided
they are signed by a key authorized by the system administrator
(@pxref{Substitutes}).
When @var{urls} is the empty string, substitutes are effectively
disabled.
@item --no-substitutes
Do not use substitutes for build products. That is, always build things
locally instead of allowing downloads of pre-built binaries
(@pxref{Substitutes}).
@item --no-grafts
Do not ``graft'' packages. In practice, this means that package updates
available as grafts are not applied. @xref{Security Updates}, for more
information on grafts.
@item --rounds=@var{n}
Build each derivation @var{n} times in a row, and raise an error if
consecutive build results are not bit-for-bit identical.
This is a useful way to detect non-deterministic builds processes.
Non-deterministic build processes are a problem because they make it
practically impossible for users to @emph{verify} whether third-party
binaries are genuine. @xref{Invoking guix challenge}, for more.
Note that, currently, the differing build results are not kept around,
so you will have to manually investigate in case of an error---e.g., by
stashing one of the build results with @code{guix archive --export}
(@pxref{Invoking guix archive}), then rebuilding, and finally comparing
the two results.
@item --no-build-hook
Do not attempt to offload builds @i{via} the ``build hook'' of the daemon
(@pxref{Daemon Offload Setup}). That is, always build things locally
instead of offloading builds to remote machines.
@item --max-silent-time=@var{seconds}
When the build or substitution process remains silent for more than
@var{seconds}, terminate it and report a build failure.
By default, the daemon's setting is honored (@pxref{Invoking
guix-daemon, @code{--max-silent-time}}).
@item --timeout=@var{seconds}
Likewise, when the build or substitution process lasts for more than
@var{seconds}, terminate it and report a build failure.
By default, the daemon's setting is honored (@pxref{Invoking
guix-daemon, @code{--timeout}}).
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
@item --verbosity=@var{level}
Use the given verbosity level. @var{level} must be an integer between 0
and 5; higher means more verbose output. Setting a level of 4 or more
may be helpful when debugging setup issues with the build daemon.
@item --cores=@var{n}
@itemx -c @var{n}
Allow the use of up to @var{n} CPU cores for the build. The special
value @code{0} means to use as many CPU cores as available.
@item --max-jobs=@var{n}
@itemx -M @var{n}
Allow at most @var{n} build jobs in parallel. @xref{Invoking
guix-daemon, @code{--max-jobs}}, for details about this option and the
equivalent @command{guix-daemon} option.
@end table
Behind the scenes, @command{guix build} is essentially an interface to
the @code{package-derivation} procedure of the @code{(guix packages)}
module, and to the @code{build-derivations} procedure of the @code{(guix
derivations)} module.
In addition to options explicitly passed on the command line,
@command{guix build} and other @command{guix} commands that support
building honor the @code{GUIX_BUILD_OPTIONS} environment variable.
@defvr {Environment Variable} GUIX_BUILD_OPTIONS
Users can define this variable to a list of command line options that
will automatically be used by @command{guix build} and other
@command{guix} commands that can perform builds, as in the example
below:
@example
$ export GUIX_BUILD_OPTIONS="--no-substitutes -c 2 -L /foo/bar"
@end example
These options are parsed independently, and the result is appended to
the parsed command-line options.
@end defvr
@node Package Transformation Options
@subsection Package Transformation Options
@cindex package variants
Another set of command-line options supported by @command{guix build}
and also @command{guix package} are @dfn{package transformation
options}. These are options that make it possible to define @dfn{package
variants}---for instance, packages built from different source code.
This is a convenient way to create customized packages on the fly
without having to type in the definitions of package variants
(@pxref{Defining Packages}).
@table @code
@item --with-source=@var{source}
@itemx --with-source=@var{package}=@var{source}
@itemx --with-source=@var{package}@@@var{version}=@var{source}
Use @var{source} as the source of @var{package}, and @var{version} as
its version number.
@var{source} must be a file name or a URL, as for @command{guix
download} (@pxref{Invoking guix download}).
When @var{package} is omitted,
it is taken to be the package name specified on the
command line that matches the base of @var{source}---e.g.,
if @var{source} is @code{/src/guile-2.0.10.tar.gz}, the corresponding
package is @code{guile}.
Likewise, when @var{version} is omitted, the version string is inferred from
@var{source}; in the previous example, it is @code{2.0.10}.
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
This option allows users to try out versions of packages other than the
one provided by the distribution. The example below downloads
@file{ed-1.7.tar.gz} from a GNU mirror and uses that as the source for
the @code{ed} package:
@example
guix build ed --with-source=mirror://gnu/ed/ed-1.7.tar.gz
@end example
As a developer, @code{--with-source} makes it easy to test release
candidates:
@example
guix build guile --with-source=../guile-2.0.9.219-e1bb7.tar.xz
@end example
@dots{} or to build from a checkout in a pristine environment:
@example
$ git clone git://git.sv.gnu.org/guix.git
$ guix build guix --with-source=guix@@1.0=./guix
@item --with-input=@var{package}=@var{replacement}
Replace dependency on @var{package} by a dependency on
@var{replacement}. @var{package} must be a package name, and
@var{replacement} must be a package specification such as @code{guile}
or @code{guile@@1.8}.
For instance, the following command builds Guix, but replaces its
dependency on the current stable version of Guile with a dependency on
the legacy version of Guile, @code{guile@@2.0}:
guix build --with-input=guile=guile@@2.0 guix
@end example
This is a recursive, deep replacement. So in this example, both
@code{guix} and its dependency @code{guile-json} (which also depends on
@code{guile}) get rebuilt against @code{guile@@2.0}.
This is implemented using the @code{package-input-rewriting} Scheme
procedure (@pxref{Defining Packages, @code{package-input-rewriting}}).
@item --with-graft=@var{package}=@var{replacement}
This is similar to @code{--with-input} but with an important difference:
instead of rebuilding the whole dependency chain, @var{replacement} is
built and then @dfn{grafted} onto the binaries that were initially
referring to @var{package}. @xref{Security Updates}, for more
information on grafts.
For example, the command below grafts version 3.5.4 of GnuTLS onto Wget
and all its dependencies, replacing references to the version of GnuTLS
they currently refer to:
@example
guix build --with-graft=gnutls=gnutls@@3.5.4 wget
@end example
This has the advantage of being much faster than rebuilding everything.
But there is a caveat: it works if and only if @var{package} and
@var{replacement} are strictly compatible---for example, if they provide
a library, the application binary interface (ABI) of those libraries
must be compatible. If @var{replacement} is somehow incompatible with
@var{package}, then the resulting package may be unusable. Use with
care!
@node Additional Build Options
@subsection Additional Build Options
The command-line options presented below are specific to @command{guix
build}.
@item --quiet
@itemx -q
Build quietly, without displaying the build log. Upon completion, the
build log is kept in @file{/var} (or similar) and can always be
retrieved using the @option{--log-file} option.
@item --file=@var{file}
@itemx -f @var{file}
Build the package or derivation that the code within @var{file}
evaluates to.
As an example, @var{file} might contain a package definition like this
(@pxref{Defining Packages}):
@example
@verbatiminclude package-hello.scm
@end example
@item --expression=@var{expr}
@itemx -e @var{expr}
Build the package or derivation @var{expr} evaluates to.
For example, @var{expr} may be @code{(@@ (gnu packages guile)
guile-1.8)}, which unambiguously designates this specific variant of
version 1.8 of Guile.
Alternatively, @var{expr} may be a G-expression, in which case it is used
as a build program passed to @code{gexp->derivation}
(@pxref{G-Expressions}).
Lastly, @var{expr} may refer to a zero-argument monadic procedure
(@pxref{The Store Monad}). The procedure must return a derivation as a
monadic value, which is then passed through @code{run-with-store}.
Build the source derivations of the packages, rather than the packages
For instance, @code{guix build -S gcc} returns something like
@file{/gnu/store/@dots{}-gcc-4.7.2.tar.bz2}, which is the GCC
source tarball.
The returned source tarball is the result of applying any patches and
code snippets specified in the package @code{origin} (@pxref{Defining
@item --sources
Fetch and return the source of @var{package-or-derivation} and all their
dependencies, recursively. This is a handy way to obtain a local copy
of all the source code needed to build @var{packages}, allowing you to
eventually build them even without network access. It is an extension
of the @code{--source} option and can accept one of the following
optional argument values:
@table @code
@item package
This value causes the @code{--sources} option to behave in the same way
as the @code{--source} option.
@item all
Build the source derivations of all packages, including any source that
might be listed as @code{inputs}. This is the default value.
@example
$ guix build --sources tzdata
The following derivations will be built:
/gnu/store/@dots{}-tzdata2015b.tar.gz.drv
/gnu/store/@dots{}-tzcode2015b.tar.gz.drv
@end example
@item transitive
Build the source derivations of all packages, as well of all transitive
inputs to the packages. This can be used e.g. to
prefetch package source for later offline building.
@example
$ guix build --sources=transitive tzdata
The following derivations will be built:
/gnu/store/@dots{}-tzcode2015b.tar.gz.drv
/gnu/store/@dots{}-findutils-4.4.2.tar.xz.drv
/gnu/store/@dots{}-grep-2.21.tar.xz.drv
/gnu/store/@dots{}-coreutils-8.23.tar.xz.drv
/gnu/store/@dots{}-make-4.1.tar.xz.drv
/gnu/store/@dots{}-bash-4.3.tar.xz.drv
@dots{}
@end example
@end table
@item --system=@var{system}
@itemx -s @var{system}
Attempt to build for @var{system}---e.g., @code{i686-linux}---instead of
@quotation Note
The @code{--system} flag is for @emph{native} compilation and must not
be confused with cross-compilation. See @code{--target} below for
information on cross-compilation.
@end quotation
An example use of this is on Linux-based systems, which can emulate
different personalities. For instance, passing
@code{--system=i686-linux} on an @code{x86_64-linux} system or
@code{--system=armhf-linux} on an @code{aarch64-linux} system allows you
to build packages in a complete 32-bit environment.
@quotation Note
Building for an @code{armhf-linux} system is unconditionally enabled on
@code{aarch64-linux} machines, although certain aarch64 chipsets do not
allow for this functionality, notably the ThunderX.
@end quotation
Similarly, when transparent emulation with QEMU and @code{binfmt_misc}
is enabled (@pxref{Virtualization Services,
@code{qemu-binfmt-service-type}}), you can build for any system for
which a QEMU @code{binfmt_misc} handler is installed.
Builds for a system other than that of the machine you are using can
also be offloaded to a remote machine of the right architecture.
@xref{Daemon Offload Setup}, for more information on offloading.
@item --target=@var{triplet}
@cindex cross-compilation
Cross-build for @var{triplet}, which must be a valid GNU triplet, such
as @code{"mips64el-linux-gnu"} (@pxref{Specifying target triplets, GNU
configuration triplets,, autoconf, Autoconf}).