Skip to content
Snippets Groups Projects
guix.texi 266 KiB
Newer Older
  • Learn to ignore specific revisions
  • 
    @var{package} must be a valid @code{<package>} object, and @var{system}
    must be a string denoting the target system type---e.g.,
    @code{"x86_64-linux"} for an x86_64 Linux-based GNU system.  @var{store}
    must be a connection to the daemon, which operates on the store
    (@pxref{The Store}).
    @end deffn
    
    @noindent
    @cindex cross-compilation
    Similarly, it is possible to compute a derivation that cross-builds a
    package for some other system:
    
    @deffn {Scheme Procedure} package-cross-derivation @var{store} @
                @var{package} @var{target} [@var{system}]
    
    Return the @code{<derivation>} object of @var{package} cross-built from
    @var{system} to @var{target}.
    
    
    @var{target} must be a valid GNU triplet denoting the target hardware
    and operating system, such as @code{"mips64el-linux-gnu"}
    (@pxref{Configuration Names, GNU configuration triplets,, configure, GNU
    Configure and Build System}).
    @end deffn
    
    
    @menu
    * package Reference ::          The package data type.
    * origin Reference::            The origin data type.
    @end menu
    
    
    @node package Reference
    @subsection @code{package} Reference
    
    This section summarizes all the options available in @code{package}
    declarations (@pxref{Defining Packages}).
    
    @deftp {Data Type} package
    This is the data type representing a package recipe.
    
    @table @asis
    @item @code{name}
    The name of the package, as a string.
    
    @item @code{version}
    The version of the package, as a string.
    
    @item @code{source}
    An origin object telling how the source code for the package should be
    acquired (@pxref{origin Reference}).
    
    @item @code{build-system}
    The build system that should be used to build the package (@pxref{Build
    Systems}).
    
    @item @code{arguments} (default: @code{'()})
    The arguments that should be passed to the build system.  This is a
    list, typically containing sequential keyword-value pairs.
    
    @item @code{inputs} (default: @code{'()})
    Package or derivation inputs to the build.  This is a list of lists,
    where each list has the name of the input (a string) as its first
    element, a package or derivation object as its second element, and
    optionally the name of the output of the package or derivation that
    should be used, which defaults to @code{"out"}.
    
    
    @item @anchor{package-propagated-inputs}@code{propagated-inputs} (default: @code{'()})
    @cindex propagated inputs
    
    This field is like @code{inputs}, but the specified packages will be
    
    force-installed alongside the package they belong to
    (@pxref{package-cmd-propagated-inputs, @command{guix package}}, for
    information on how @command{guix package} deals with propagated inputs.)
    
    For example this is necessary when a library needs headers of another
    library to compile, or needs another shared library to be linked
    alongside itself when a program wants to link to it.
    
    
    @item @code{native-inputs} (default: @code{'()})
    This field is like @code{inputs}, but in case of a cross-compilation it
    will be ensured that packages for the architecture of the build machine
    are present, such that executables from them can be used during the
    
    build.
    
    This is typically where you would list tools needed at build time but
    not at run time, such as Autoconf, Automake, pkg-config, Gettext, or
    Bison.  @command{guix lint} can report likely mistakes in this area
    (@pxref{Invoking guix lint}).
    
    
    @item @code{self-native-input?} (default: @code{#f})
    This is a Boolean field telling whether the package should use itself as
    a native input when cross-compiling.
    
    @item @code{outputs} (default: @code{'("out")})
    The list of output names of the package.  @xref{Packages with Multiple
    Outputs}, for typical uses of additional outputs.
    
    @item @code{native-search-paths} (default: @code{'()})
    @itemx @code{search-paths} (default: @code{'()})
    A list of @code{search-path-specification} objects describing
    search-path environment variables honored by the package.
    
    @item @code{replacement} (default: @code{#f})
    This must either @code{#f} or a package object that will be used as a
    @dfn{replacement} for this package.  @xref{Security Updates, grafts},
    for details.
    
    @item @code{synopsis}
    A one-line description of the package.
    
    @item @code{description}
    A more elaborate description of the package.
    
    @item @code{license}
    The license of the package; a value from @code{(guix licenses)}.
    
    @item @code{home-page}
    The URL to the home-page of the package, as a string.
    
    @item @code{supported-systems} (default: @var{%supported-systems})
    The list of systems supported by the package, as strings of the form
    @code{architecture-kernel}, for example @code{"x86_64-linux"}.
    
    @item @code{maintainers} (default: @code{'()})
    The list of maintainers of the package, as @code{maintainer} objects.
    
    @item @code{location} (default: source location of the @code{package} form)
    The source location of the package.  It's useful to override this when
    inheriting from another package, in which case this field is not
    automatically corrected.
    @end table
    @end deftp
    
    
    @node origin Reference
    @subsection @code{origin} Reference
    
    This section summarizes all the options available in @code{origin}
    declarations (@pxref{Defining Packages}).
    
    @deftp {Data Type} origin
    This is the data type representing a source code origin.
    
    @table @asis
    @item @code{uri}
    An object containing the URI of the source.  The object type depends on
    the @code{method} (see below).  For example, when using the
    @var{url-fetch} method of @code{(guix download)}, the valid @code{uri}
    values are: a URL represented as a string, or a list thereof.
    
    @item @code{method}
    A procedure that will handle the URI.
    
    Examples include:
    
    @table @asis
    @item @var{url-fetch} from @code{(guix download)}
    download a file the HTTP, HTTPS, or FTP URL specified in the
    @code{uri} field;
    
    @item @var{git-fetch} from @code{(guix git-download)}
    clone the Git version control repository, and check out the revision
    specified in the @code{uri} field as a @code{git-reference} object; a
    @code{git-reference} looks like this:
    
    @example
    (git-reference
      (url "git://git.debian.org/git/pkg-shadow/shadow")
      (commit "v4.1.5.1"))
    @end example
    @end table
    
    @item @code{sha256}
    A bytevector containing the SHA-256 hash of the source.  Typically the
    @code{base32} form is used here to generate the bytevector from a
    base-32 string.
    
    @item @code{file-name} (default: @code{#f})
    The file name under which the source code should be saved.  When this is
    @code{#f}, a sensible default value will be used in most cases.  In case
    the source is fetched from a URL, the file name from the URL will be
    used.  For version control checkouts, it's recommended to provide the
    file name explicitly because the default is not very descriptive.
    
    @item @code{patches} (default: @code{'()})
    A list of file names containing patches to be applied to the source.
    
    @item @code{snippet} (default: @code{#f})
    A quoted piece of code that will be run in the source directory to make
    any modifications, which is sometimes more convenient than a patch.
    
    @item @code{patch-flags} (default: @code{'("-p1")})
    A list of command-line flags that should be passed to the @code{patch}
    command.
    
    @item @code{patch-inputs} (default: @code{#f})
    Input packages or derivations to the patching process.  When this is
    @code{#f}, the usual set of inputs necessary for patching are provided,
    such as GNU@tie{}Patch.
    
    @item @code{modules} (default: @code{'()})
    A list of Guile modules that should be loaded during the patching
    process and while running the code in the @code{snippet} field.
    
    @item @code{imported-modules} (default: @code{'()})
    The list of Guile modules to import in the patch derivation, for use by
    the @code{snippet}.
    
    @item @code{patch-guile} (default: @code{#f})
    The Guile package that should be used in the patching process.  When
    this is @code{#f}, a sensible default is used.
    @end table
    @end deftp
    
    
    @node Build Systems
    @section Build Systems
    
    @cindex build system
    Each package definition specifies a @dfn{build system} and arguments for
    that build system (@pxref{Defining Packages}).  This @code{build-system}
    field represents the build procedure of the package, as well implicit
    dependencies of that build procedure.
    
    Build systems are @code{<build-system>} objects.  The interface to
    create and manipulate them is provided by the @code{(guix build-system)}
    module, and actual build systems are exported by specific modules.
    
    
    @cindex bag (low-level package representation)
    
    Under the hood, build systems first compile package objects to
    @dfn{bags}.  A @dfn{bag} is like a package, but with less
    ornamentation---in other words, a bag is a lower-level representation of
    a package, which includes all the inputs of that package, including some
    that were implicitly added by the build system.  This intermediate
    representation is then compiled to a derivation (@pxref{Derivations}).
    
    
    Build systems accept an optional list of @dfn{arguments}.  In package
    definitions, these are passed @i{via} the @code{arguments} field
    (@pxref{Defining Packages}).  They are typically keyword arguments
    (@pxref{Optional Arguments, keyword arguments in Guile,, guile, GNU
    Guile Reference Manual}).  The value of these arguments is usually
    evaluated in the @dfn{build stratum}---i.e., by a Guile process launched
    by the daemon (@pxref{Derivations}).
    
    The main build system is @var{gnu-build-system}, which implements the
    standard build procedure for GNU packages and many other packages.  It
    is provided by the @code{(guix build-system gnu)} module.
    
    @defvr {Scheme Variable} gnu-build-system
    @var{gnu-build-system} represents the GNU Build System, and variants
    thereof (@pxref{Configuration, configuration and makefile conventions,,
    standards, GNU Coding Standards}).
    
    @cindex build phases
    In a nutshell, packages using it configured, built, and installed with
    the usual @code{./configure && make && make check && make install}
    command sequence.  In practice, a few additional steps are often needed.
    All these steps are split up in separate @dfn{phases},
    notably@footnote{Please see the @code{(guix build gnu-build-system)}
    modules for more details about the build phases.}:
    
    @table @code
    @item unpack
    Unpack the source tarball, and change the current directory to the
    extracted source tree.  If the source is actually a directory, copy it
    to the build tree, and enter that directory.
    
    @item patch-source-shebangs
    Patch shebangs encountered in source files so they refer to the right
    store file names.  For instance, this changes @code{#!/bin/sh} to
    @code{#!/gnu/store/@dots{}-bash-4.3/bin/sh}.
    
    @item configure
    Run the @file{configure} script with a number of default options, such
    as @code{--prefix=/gnu/store/@dots{}}, as well as the options specified
    by the @code{#:configure-flags} argument.
    
    @item build
    Run @code{make} with the list of flags specified with
    @code{#:make-flags}.  If the @code{#:parallel-builds?} argument is true
    (the default), build with @code{make -j}.
    
    @item check
    Run @code{make check}, or some other target specified with
    @code{#:test-target}, unless @code{#:tests? #f} is passed.  If the
    @code{#:parallel-tests?} argument is true (the default), run @code{make
    check -j}.
    
    @item install
    Run @code{make install} with the flags listed in @code{#:make-flags}.
    
    @item patch-shebangs
    Patch shebangs on the installed executable files.
    
    @item strip
    Strip debugging symbols from ELF files (unless @code{#:strip-binaries?}
    is false), copying them to the @code{debug} output when available
    (@pxref{Installing Debugging Files}).
    @end table
    
    @vindex %standard-phases
    The build-side module @code{(guix build gnu-build-system)} defines
    @var{%standard-phases} as the default list of build phases.
    @var{%standard-phases} is a list of symbol/procedure pairs, where the
    procedure implements the actual phase.
    
    The list of phases used for a particular package can be changed with the
    @code{#:phases} parameter.  For instance, passing:
    
    @example
    #:phases (alist-delete 'configure %standard-phases)
    @end example
    
    
    Alírio Eyng's avatar
    Alírio Eyng committed
    means that all the phases described above will be used, except the
    
    @code{configure} phase.
    
    In addition, this build system ensures that the ``standard'' environment
    for GNU packages is available.  This includes tools such as GCC, libc,
    Coreutils, Bash, Make, Diffutils, grep, and sed (see the @code{(guix
    build-system gnu)} module for a complete list.)  We call these the
    @dfn{implicit inputs} of a package, because package definitions don't
    have to mention them.
    @end defvr
    
    Other @code{<build-system>} objects are defined to support other
    conventions and tools used by free software packages.  They inherit most
    of @var{gnu-build-system}, and differ mainly in the set of inputs
    implicitly added to the build process, and in the list of phases
    executed.  Some of these build systems are listed below.
    
    @defvr {Scheme Variable} cmake-build-system
    This variable is exported by @code{(guix build-system cmake)}.  It
    implements the build procedure for packages using the
    @url{http://www.cmake.org, CMake build tool}.
    
    It automatically adds the @code{cmake} package to the set of inputs.
    Which package is used can be specified with the @code{#:cmake}
    parameter.
    
    
    The @code{#:configure-flags} parameter is taken as a list of flags
    passed to the @command{cmake} command.  The @code{#:build-type}
    parameter specifies in abstract terms the flags passed to the compiler;
    it defaults to @code{"RelWithDebInfo"} (short for ``release mode with
    debugging information''), which roughly means that code is compiled with
    @code{-O2 -g}, as is the case for Autoconf-based packages by default.
    
    @defvr {Scheme Variable} glib-or-gtk-build-system
    This variable is exported by @code{(guix build-system glib-or-gtk)}.  It
    is intended for use with packages making use of GLib or GTK+.
    
    This build system adds the following two phases to the ones defined by
    @var{gnu-build-system}:
    
    @table @code
    @item glib-or-gtk-wrap
    The phase @code{glib-or-gtk-wrap} ensures that programs found under
    @file{bin/} are able to find GLib's ``schemas'' and
    @uref{https://developer.gnome.org/gtk3/stable/gtk-running.html, GTK+
    modules}.  This is achieved by wrapping the programs in launch scripts
    that appropriately set the @code{XDG_DATA_DIRS} and @code{GTK_PATH}
    environment variables.
    
    
    It is possible to exclude specific package outputs from that wrapping
    process by listing their names in the
    @code{#:glib-or-gtk-wrap-excluded-outputs} parameter.  This is useful
    when an output is known not to contain any GLib or GTK+ binaries, and
    where wrapping would gratuitously add a dependency of that output on
    GLib and GTK+.
    
    
    @item glib-or-gtk-compile-schemas
    The phase @code{glib-or-gtk-compile-schemas} makes sure that all GLib's
    @uref{https://developer.gnome.org/gio/stable/glib-compile-schemas.html,
    GSettings schemas} are compiled.  Compilation is performed by the
    @command{glib-compile-schemas} program.  It is provided by the package
    @code{glib:bin} which is automatically imported by the build system.
    The @code{glib} package providing @command{glib-compile-schemas} can be
    specified with the @code{#:glib} parameter.
    @end table
    
    Both phases are executed after the @code{install} phase.
    @end defvr
    
    
    @defvr {Scheme Variable} python-build-system
    This variable is exported by @code{(guix build-system python)}.  It
    implements the more or less standard build procedure used by Python
    packages, which consists in running @code{python setup.py build} and
    then @code{python setup.py install --prefix=/gnu/store/@dots{}}.
    
    For packages that install stand-alone Python programs under @code{bin/},
    it takes care of wrapping these programs so their @code{PYTHONPATH}
    environment variable points to all the Python libraries they depend on.
    
    Which Python package is used can be specified with the @code{#:python}
    parameter.
    @end defvr
    
    @defvr {Scheme Variable} perl-build-system
    This variable is exported by @code{(guix build-system perl)}.  It
    
    implements the standard build procedure for Perl packages, which either
    consists in running @code{perl Build.PL --prefix=/gnu/store/@dots{}},
    followed by @code{Build} and @code{Build install}; or in running
    @code{perl Makefile.PL PREFIX=/gnu/store/@dots{}}, followed by
    @code{make} and @code{make install}; depending on which of
    @code{Build.PL} or @code{Makefile.PL} is present in the package
    distribution.  Preference is given to the former if both @code{Build.PL}
    and @code{Makefile.PL} exist in the package distribution.  This
    preference can be reversed by specifying @code{#t} for the
    @code{#:make-maker?} parameter.
    
    The initial @code{perl Makefile.PL} or @code{perl Build.PL} invocation
    passes flags specified by the @code{#:make-maker-flags} or
    @code{#:module-build-flags} parameter, respectively.
    
    
    Which Perl package is used can be specified with @code{#:perl}.
    @end defvr
    
    
    @defvr {Scheme Variable} ruby-build-system
    This variable is exported by @code{(guix build-system ruby)}.  It
    implements the RubyGems build procedure used by Ruby packages, which
    involves running @code{gem build} followed by @code{gem install}.
    
    Which Ruby package is used can be specified with the @code{#:ruby}
    parameter.
    @end defvr
    
    @defvr {Scheme Variable} waf-build-system
    This variable is exported by @code{(guix build-system waf)}.  It
    implements a build procedure around the @code{waf} script.  The common
    phases---@code{configure}, @code{build}, and @code{install}---are
    implemented by passing their names as arguments to the @code{waf}
    script.
    
    The @code{waf} script is executed by the Python interpreter.  Which
    Python package is used to run the script can be specified with the
    @code{#:python} parameter.
    @end defvr
    
    
    @defvr {Scheme Variable} haskell-build-system
    This variable is exported by @code{(guix build-system haskell)}.  It
    implements the Cabal build procedure used by Haskell packages, which
    involves running @code{runhaskell Setup.hs configure
    --prefix=/gnu/store/@dots{}} and @code{runhaskell Setup.hs build}.
    Instead of installing the package by running @code{runhaskell Setup.hs
    install}, to avoid trying to register libraries in the read-only
    compiler store directory, the build system uses @code{runhaskell
    Setup.hs copy}, followed by @code{runhaskell Setup.hs register}.  In
    addition, the build system generates the package documentation by
    running @code{runhaskell Setup.hs haddock}, unless @code{#:haddock? #f}
    is passed.  Optional Haddock parameters can be passed with the help of
    the @code{#:haddock-flags} parameter.  If the file @code{Setup.hs} is
    not found, the build system looks for @code{Setup.lhs} instead.
    
    Which Haskell compiler is used can be specified with the @code{#:haskell}
    
    parameter which defaults to @code{ghc}.
    
    Lastly, for packages that do not need anything as sophisticated, a
    ``trivial'' build system is provided.  It is trivial in the sense that
    it provides basically no support: it does not pull any implicit inputs,
    and does not have a notion of build phases.
    
    @defvr {Scheme Variable} trivial-build-system
    This variable is exported by @code{(guix build-system trivial)}.
    
    This build system requires a @code{#:builder} argument.  This argument
    must be a Scheme expression that builds the package's output(s)---as
    with @code{build-expression->derivation} (@pxref{Derivations,
    @code{build-expression->derivation}}).
    @end defvr
    
    
    @node The Store
    @section The Store
    
    
    @cindex store
    @cindex store paths
    
    Conceptually, the @dfn{store} is where derivations that have been
    
    successfully built are stored---by default, under @file{/gnu/store}.
    
    Sub-directories in the store are referred to as @dfn{store paths}.  The
    store has an associated database that contains information such has the
    store paths referred to by each store path, and the list of @emph{valid}
    store paths---paths that result from a successful build.
    
    The store is always accessed by the daemon on behalf of its clients
    (@pxref{Invoking guix-daemon}).  To manipulate the store, clients
    connect to the daemon over a Unix-domain socket, send it requests, and
    read the result---these are remote procedure calls, or RPCs.
    
    The @code{(guix store)} module provides procedures to connect to the
    daemon, and to perform RPCs.  These are described below.
    
    @deffn {Scheme Procedure} open-connection [@var{file}] [#:reserve-space? #t]
    Connect to the daemon over the Unix-domain socket at @var{file}.  When
    @var{reserve-space?} is true, instruct it to reserve a little bit of
    extra space on the file system so that the garbage collector can still
    operate, should the disk become full.  Return a server object.
    
    @var{file} defaults to @var{%default-socket-path}, which is the normal
    location given the options that were passed to @command{configure}.
    @end deffn
    
    @deffn {Scheme Procedure} close-connection @var{server}
    Close the connection to @var{server}.
    @end deffn
    
    @defvr {Scheme Variable} current-build-output-port
    This variable is bound to a SRFI-39 parameter, which refers to the port
    where build and error logs sent by the daemon should be written.
    @end defvr
    
    Procedures that make RPCs all take a server object as their first
    argument.
    
    @deffn {Scheme Procedure} valid-path? @var{server} @var{path}
    Return @code{#t} when @var{path} is a valid store path.
    @end deffn
    
    
    @deffn {Scheme Procedure} add-text-to-store @var{server} @var{name} @var{text} [@var{references}]
    
    Add @var{text} under file @var{name} in the store, and return its store
    path.  @var{references} is the list of store paths referred to by the
    resulting store path.
    @end deffn
    
    
    @deffn {Scheme Procedure} build-derivations @var{server} @var{derivations}
    
    Build @var{derivations} (a list of @code{<derivation>} objects or
    derivation paths), and return when the worker is done building them.
    Return @code{#t} on success.
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    Note that the @code{(guix monads)} module provides a monad as well as
    monadic versions of the above procedures, with the goal of making it
    more convenient to work with code that accesses the store (@pxref{The
    Store Monad}).
    
    
    @c FIXME
    @i{This section is currently incomplete.}
    
    
    @node Derivations
    @section Derivations
    
    
    @cindex derivations
    Low-level build actions and the environment in which they are performed
    are represented by @dfn{derivations}.  A derivation contain the
    following pieces of information:
    
    @itemize
    @item
    The outputs of the derivation---derivations produce at least one file or
    directory in the store, but may produce more.
    
    @item
    The inputs of the derivations, which may be other derivations or plain
    files in the store (patches, build scripts, etc.)
    
    @item
    The system type targeted by the derivation---e.g., @code{x86_64-linux}.
    
    @item
    The file name of a build script in the store, along with the arguments
    to be passed.
    
    @item
    A list of environment variables to be defined.
    
    @end itemize
    
    @cindex derivation path
    Derivations allow clients of the daemon to communicate build actions to
    the store.  They exist in two forms: as an in-memory representation,
    both on the client- and daemon-side, and as files in the store whose
    name end in @code{.drv}---these files are referred to as @dfn{derivation
    paths}.  Derivations paths can be passed to the @code{build-derivations}
    procedure to perform the build actions they prescribe (@pxref{The
    Store}).
    
    The @code{(guix derivations)} module provides a representation of
    derivations as Scheme objects, along with procedures to create and
    otherwise manipulate derivations.  The lowest-level primitive to create
    a derivation is the @code{derivation} procedure:
    
    
    @deffn {Scheme Procedure} derivation @var{store} @var{name} @var{builder} @
      @var{args} [#:outputs '("out")] [#:hash #f] [#:hash-algo #f] @
    
      [#:recursive? #f] [#:inputs '()] [#:env-vars '()] @
    
      [#:system (%current-system)] [#:references-graphs #f] @
    
      [#:allowed-references #f] [#:leaked-env-vars #f] [#:local-build? #f]
    
    Build a derivation with the given arguments, and return the resulting
    @code{<derivation>} object.
    
    When @var{hash} and @var{hash-algo} are given, a
    
    @dfn{fixed-output derivation} is created---i.e., one whose result is
    
    known in advance, such as a file download.  If, in addition,
    @var{recursive?} is true, then that fixed output may be an executable
    file or a directory and @var{hash} must be the hash of an archive
    containing this output.
    
    When @var{references-graphs} is true, it must be a list of file
    
    name/store path pairs.  In that case, the reference graph of each store
    path is exported in the build environment in the corresponding file, in
    a simple text format.
    
    When @var{allowed-references} is true, it must be a list of store items
    or outputs that the derivation's output may refer to.
    
    
    When @var{leaked-env-vars} is true, it must be a list of strings
    denoting environment variables that are allowed to ``leak'' from the
    daemon's environment to the build environment.  This is only applicable
    to fixed-output derivations---i.e., when @var{hash} is true.  The main
    use is to allow variables such as @code{http_proxy} to be passed to
    derivations that download files.
    
    
    When @var{local-build?} is true, declare that the derivation is not a
    good candidate for offloading and should rather be built locally
    (@pxref{Daemon Offload Setup}).  This is the case for small derivations
    where the costs of data transfers would outweigh the benefits.
    
    @end deffn
    
    @noindent
    Here's an example with a shell script as its builder, assuming
    @var{store} is an open connection to the daemon, and @var{bash} points
    to a Bash executable in the store:
    
    @lisp
    (use-modules (guix utils)
                 (guix store)
                 (guix derivations))
    
    
    (let ((builder   ; add the Bash script to the store
            (add-text-to-store store "my-builder.sh"
                               "echo hello world > $out\n" '())))
      (derivation store "foo"
                  bash `("-e" ,builder)
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
                  #:inputs `((,bash) (,builder))
    
                  #:env-vars '(("HOME" . "/homeless"))))
    
    @result{} #<derivation /gnu/store/@dots{}-foo.drv => /gnu/store/@dots{}-foo>
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    As can be guessed, this primitive is cumbersome to use directly.  A
    better approach is to write build scripts in Scheme, of course!  The
    best course of action for that is to write the build code as a
    ``G-expression'', and to pass it to @code{gexp->derivation}.  For more
    
    information, @pxref{G-Expressions}.
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    
    Once upon a time, @code{gexp->derivation} did not exist and constructing
    derivations with build code written in Scheme was achieved with
    @code{build-expression->derivation}, documented below.  This procedure
    is now deprecated in favor of the much nicer @code{gexp->derivation}.
    
    @deffn {Scheme Procedure} build-expression->derivation @var{store} @
           @var{name} @var{exp} @
           [#:system (%current-system)] [#:inputs '()] @
           [#:outputs '("out")] [#:hash #f] [#:hash-algo #f] @
    
           [#:recursive? #f] [#:env-vars '()] [#:modules '()] @
    
           [#:references-graphs #f] [#:allowed-references #f] @
           [#:local-build? #f] [#:guile-for-build #f]
    
    Return a derivation that executes Scheme expression @var{exp} as a
    builder for derivation @var{name}.  @var{inputs} must be a list of
    @code{(name drv-path sub-drv)} tuples; when @var{sub-drv} is omitted,
    @code{"out"} is assumed.  @var{modules} is a list of names of Guile
    modules from the current search path to be copied in the store,
    compiled, and made available in the load path during the execution of
    @var{exp}---e.g., @code{((guix build utils) (guix build
    gnu-build-system))}.
    
    @var{exp} is evaluated in an environment where @code{%outputs} is bound
    to a list of output/path pairs, and where @code{%build-inputs} is bound
    to a list of string/output-path pairs made from @var{inputs}.
    Optionally, @var{env-vars} is a list of string pairs specifying the name
    and value of environment variables visible to the builder.  The builder
    terminates by passing the result of @var{exp} to @code{exit}; thus, when
    @var{exp} returns @code{#f}, the build is considered to have failed.
    
    @var{exp} is built using @var{guile-for-build} (a derivation).  When
    @var{guile-for-build} is omitted or is @code{#f}, the value of the
    @code{%guile-for-build} fluid is used instead.
    
    See the @code{derivation} procedure for the meaning of
    @var{references-graphs}, @var{allowed-references}, and @var{local-build?}.
    
    @end deffn
    
    @noindent
    Here's an example of a single-output derivation that creates a directory
    containing one file:
    
    @lisp
    (let ((builder '(let ((out (assoc-ref %outputs "out")))
    
                      (mkdir out)    ; create /gnu/store/@dots{}-goo
    
                      (call-with-output-file (string-append out "/test")
                        (lambda (p)
                          (display '(hello guix) p))))))
    
      (build-expression->derivation store "goo" builder))
    
    @result{} #<derivation /gnu/store/@dots{}-goo.drv => @dots{}>
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    @node The Store Monad
    @section The Store Monad
    
    @cindex monad
    
    The procedures that operate on the store described in the previous
    sections all take an open connection to the build daemon as their first
    argument.  Although the underlying model is functional, they either have
    side effects or depend on the current state of the store.
    
    The former is inconvenient: the connection to the build daemon has to be
    carried around in all those functions, making it impossible to compose
    functions that do not take that parameter with functions that do.  The
    latter can be problematic: since store operations have side effects
    and/or depend on external state, they have to be properly sequenced.
    
    @cindex monadic values
    @cindex monadic functions
    This is where the @code{(guix monads)} module comes in.  This module
    provides a framework for working with @dfn{monads}, and a particularly
    useful monad for our uses, the @dfn{store monad}.  Monads are a
    construct that allows two things: associating ``context'' with values
    (in our case, the context is the store), and building sequences of
    
    computations (here computations include accesses to the store.)  Values
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    in a monad---values that carry this additional context---are called
    @dfn{monadic values}; procedures that return such values are called
    @dfn{monadic procedures}.
    
    Consider this ``normal'' procedure:
    
    @example
    
    (define (sh-symlink store)
      ;; Return a derivation that symlinks the 'bash' executable.
      (let* ((drv (package-derivation store bash))
             (out (derivation->output-path drv))
             (sh  (string-append out "/bin/bash")))
        (build-expression->derivation store "sh"
                                      `(symlink ,sh %output))))
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    @end example
    
    
    Using @code{(guix monads)} and @code{(guix gexp)}, it may be rewritten
    as a monadic function:
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    
    @example
    
    (define (sh-symlink)
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
      ;; Same, but return a monadic value.
    
      (mlet %store-monad ((drv (package->derivation bash)))
        (gexp->derivation "sh"
                          #~(symlink (string-append #$drv "/bin/bash")
                                     #$output))))
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    @end example
    
    
    There several things to note in the second version: the @code{store}
    parameter is now implicit and is ``threaded'' in the calls to the
    @code{package->derivation} and @code{gexp->derivation} monadic
    procedures, and the monadic value returned by @code{package->derivation}
    is @dfn{bound} using @code{mlet} instead of plain @code{let}.
    
    As it turns out, the call to @code{package->derivation} can even be
    omitted since it will take place implicitly, as we will see later
    (@pxref{G-Expressions}):
    
    @example
    (define (sh-symlink)
      (gexp->derivation "sh"
                        #~(symlink (string-append #$bash "/bin/bash")
                                   #$output)))
    @end example
    
    @c See
    @c <https://syntaxexclamation.wordpress.com/2014/06/26/escaping-continuations/> 
    @c for the funny quote.
    Calling the monadic @code{sh-symlink} has no effect.  As someone once
    said, ``you exit a monad like you exit a building on fire: by running''.
    So, to exit the monad and get the desired effect, one must use
    @code{run-with-store}:
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    
    @example
    
    (run-with-store (open-connection) (sh-symlink))
    @result{} /gnu/store/...-sh-symlink
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    @end example
    
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    Note that the @code{(guix monad-repl)} module extends Guile's REPL with
    new ``meta-commands'' to make it easier to deal with monadic procedures:
    @code{run-in-store}, and @code{enter-store-monad}.  The former, is used
    to ``run'' a single monadic value through the store:
    
    @example
    scheme@@(guile-user)> ,run-in-store (package->derivation hello)
    $1 = #<derivation /gnu/store/@dots{}-hello-2.9.drv => @dots{}>
    @end example
    
    The latter enters a recursive REPL, where all the return values are
    automatically run through the store:
    
    @example
    scheme@@(guile-user)> ,enter-store-monad
    store-monad@@(guile-user) [1]> (package->derivation hello)
    $2 = #<derivation /gnu/store/@dots{}-hello-2.9.drv => @dots{}>
    store-monad@@(guile-user) [1]> (text-file "foo" "Hello!")
    $3 = "/gnu/store/@dots{}-foo"
    store-monad@@(guile-user) [1]> ,q
    scheme@@(guile-user)>
    @end example
    
    @noindent
    Note that non-monadic values cannot be returned in the
    @code{store-monad} REPL.
    
    
    The main syntactic forms to deal with monads in general are provided by
    the @code{(guix monads)} module and are described below.
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    
    @deffn {Scheme Syntax} with-monad @var{monad} @var{body} ...
    Evaluate any @code{>>=} or @code{return} forms in @var{body} as being
    in @var{monad}.
    @end deffn
    
    @deffn {Scheme Syntax} return @var{val}
    Return a monadic value that encapsulates @var{val}.
    @end deffn
    
    
    @deffn {Scheme Syntax} >>= @var{mval} @var{mproc} ...
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    @dfn{Bind} monadic value @var{mval}, passing its ``contents'' to monadic
    
    procedures @var{mproc}@dots{}@footnote{This operation is commonly
    referred to as ``bind'', but that name denotes an unrelated procedure in
    Guile.  Thus we use this somewhat cryptic symbol inherited from the
    Haskell language.}.  There can be one @var{mproc} or several of them, as
    in this example:
    
    @example
    (run-with-state
        (with-monad %state-monad
          (>>= (return 1)
               (lambda (x) (return (+ 1 x)))
               (lambda (x) (return (* 2 x)))))
      'some-state)
    
    @result{} 4
    @result{} some-state
    @end example
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    @end deffn
    
    @deffn {Scheme Syntax} mlet @var{monad} ((@var{var} @var{mval}) ...) @
           @var{body} ...
    @deffnx {Scheme Syntax} mlet* @var{monad} ((@var{var} @var{mval}) ...) @
           @var{body} ...
    Bind the variables @var{var} to the monadic values @var{mval} in
    @var{body}.  The form (@var{var} -> @var{val}) binds @var{var} to the
    ``normal'' value @var{val}, as per @code{let}.
    
    @code{mlet*} is to @code{mlet} what @code{let*} is to @code{let}
    (@pxref{Local Bindings,,, guile, GNU Guile Reference Manual}).
    @end deffn
    
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    @deffn {Scheme System} mbegin @var{monad} @var{mexp} ...
    Bind @var{mexp} and the following monadic expressions in sequence,
    returning the result of the last expression.
    
    This is akin to @code{mlet}, except that the return values of the
    monadic expressions are ignored.  In that sense, it is analogous to
    @code{begin}, but applied to monadic expressions.
    @end deffn
    
    
    @cindex state monad
    The @code{(guix monads)} module provides the @dfn{state monad}, which
    allows an additional value---the state---to be @emph{threaded} through
    monadic procedure calls.
    
    @defvr {Scheme Variable} %state-monad
    The state monad.  Procedures in the state monad can access and change
    the state that is threaded.
    
    Consider the example below.  The @code{square} procedure returns a value
    in the state monad.  It returns the square of its argument, but also
    increments the current state value:
    
    @example
    (define (square x)
      (mlet %state-monad ((count (current-state)))
        (mbegin %state-monad
          (set-current-state (+ 1 count))
          (return (* x x)))))
    
    (run-with-state (sequence %state-monad (map square (iota 3))) 0)
    @result{} (0 1 4)
    @result{} 3
    @end example
    
    When ``run'' through @var{%state-monad}, we obtain that additional state
    value, which is the number of @code{square} calls.
    @end defvr
    
    @deffn {Monadic Procedure} current-state
    Return the current state as a monadic value.
    @end deffn
    
    @deffn {Monadic Procedure} set-current-state @var{value}
    Set the current state to @var{value} and return the previous state as a
    monadic value.
    @end deffn
    
    @deffn {Monadic Procedure} state-push @var{value}
    Push @var{value} to the current state, which is assumed to be a list,
    and return the previous state as a monadic value.
    @end deffn
    
    @deffn {Monadic Procedure} state-pop
    Pop a value from the current state and return it as a monadic value.
    The state is assumed to be a list.
    @end deffn
    
    @deffn {Scheme Procedure} run-with-state @var{mval} [@var{state}]
    Run monadic value @var{mval} starting with @var{state} as the initial
    state.  Return two values: the resulting value, and the resulting state.
    @end deffn
    
    
    The main interface to the store monad, provided by the @code{(guix
    store)} module, is as follows.
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    
    @defvr {Scheme Variable} %store-monad
    
    The store monad---an alias for @var{%state-monad}.
    
    Values in the store monad encapsulate accesses to the store.  When its
    effect is needed, a value of the store monad must be ``evaluated'' by
    passing it to the @code{run-with-store} procedure (see below.)
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    @end defvr
    
    @deffn {Scheme Procedure} run-with-store @var{store} @var{mval} [#:guile-for-build] [#:system (%current-system)]
    Run @var{mval}, a monadic value in the store monad, in @var{store}, an
    open store connection.
    @end deffn
    
    
    @deffn {Monadic Procedure} text-file @var{name} @var{text} [@var{references}]
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    Return as a monadic value the absolute file name in the store of the file
    
    containing @var{text}, a string.  @var{references} is a list of store items that the
    resulting text file refers to; it defaults to the empty list.
    
    @deffn {Monadic Procedure} interned-file @var{file} [@var{name}] @
             [#:recursive? #t]
    Return the name of @var{file} once interned in the store.  Use
    @var{name} as its store name, or the basename of @var{file} if
    @var{name} is omitted.
    
    When @var{recursive?} is true, the contents of @var{file} are added
    recursively; if @var{file} designates a flat file and @var{recursive?}
    is true, its contents are added, and its permission bits are kept.
    
    The example below adds a file to the store, under two different names:
    
    @example
    (run-with-store (open-connection)
      (mlet %store-monad ((a (interned-file "README"))
                          (b (interned-file "README" "LEGU-MIN")))
        (return (list a b))))
    
    @result{} ("/gnu/store/rwm@dots{}-README" "/gnu/store/44i@dots{}-LEGU-MIN")
    @end example
    
    @end deffn
    
    
    The @code{(guix packages)} module exports the following package-related
    monadic procedures:
    
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    @deffn {Monadic Procedure} package-file @var{package} [@var{file}] @
    
           [#:system (%current-system)] [#:target #f] @
           [#:output "out"] Return as a monadic
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    value in the absolute file name of @var{file} within the @var{output}
    directory of @var{package}.  When @var{file} is omitted, return the name
    
    of the @var{output} directory of @var{package}.  When @var{target} is
    true, use it as a cross-compilation target triplet.
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    @end deffn
    
    @deffn {Monadic Procedure} package->derivation @var{package} [@var{system}]
    
    @deffnx {Monadic Procedure} package->cross-derivation @var{package} @
              @var{target} [@var{system}]
    Monadic version of @code{package-derivation} and
    @code{package-cross-derivation} (@pxref{Defining Packages}).
    
    Ludovic Courtès's avatar
    Ludovic Courtès committed
    @node G-Expressions
    @section G-Expressions
    
    @cindex G-expression
    @cindex build code quoting
    So we have ``derivations'', which represent a sequence of build actions
    to be performed to produce an item in the store (@pxref{Derivations}).
    Those build actions are performed when asking the daemon to actually
    build the derivations; they are run by the daemon in a container
    (@pxref{Invoking guix-daemon}).
    
    @cindex strata of code
    It should come as no surprise that we like to write those build actions
    in Scheme.  When we do that, we end up with two @dfn{strata} of Scheme
    code@footnote{The term @dfn{stratum} in this context was coined by
    
    Manuel Serrano et al.@: in the context of their work on Hop.  Oleg
    Kiselyov, who has written insightful
    @url{http://okmij.org/ftp/meta-programming/#meta-scheme, essays and code
    on this topic}, refers to this kind of code generation as
    @dfn{staging}.}: the ``host code''---code that defines packages, talks
    to the daemon, etc.---and the ``build code''---code that actually
    performs build actions, such as making directories, invoking
    @command{make}, etc.